精英家教网 > 高中数学 > 题目详情

【题目】等差数列{an}的前n项和为Sn , 已知a2=7,a3为整数,且Sn的最大值为S5
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

【答案】
(1)解:∵等差数列{an}的前n项和Sn的最大值为S5

∴a5≥0,则d= =

a6≤0,则d=

∵a3=a2+d=7+d为整数,∴d=﹣2.

则a1=a2﹣d=7﹣(﹣2)=9,

∴an=9﹣2(n﹣1)=11﹣2n


(2)解:bn= =

两式作差得: =

=


【解析】(1)由题意列式求出公差,进一步求出首项,代入等差数列的通项公式得答案;(2)把{an}的通项公式代入bn= ,然后利用错位相减法求数列{bn}的前n项和Tn
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,P是椭圆上一点,|PF1|=λ|PF2|,∠F1PF2=,则椭圆离心率的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数a≥0,函数f(x)=x﹣ln2x+2alnx﹣1
(1)令g(x)=xf'(x)(x>0),求g(x)的最小值,并比较g(x)的最小值与0的大小;
(2)求证:f(x)在(0,+∞)上是增函数;
(3)求证:当x>1时,恒有x>ln2x﹣2alnx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C1和C2的参数方程分别是 (φ为参数)和 (φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求圆C1和C2的极坐标方程;
(2)射线OM:θ=a与圆C1的交点为O、P,与圆C2的交点为O、Q,求|OP||OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, AB=1∠ABC=.

(1 )证明:

2)求二面角A——B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点H(0,﹣8),点P在x轴上,动点F满足PF⊥PH,且PF与y轴交于点Q,Q为线段PF的中点.
(1)求动点F的轨迹E的方程;
(2)点D是直线l:x﹣y﹣2=0上任意一点,过点D作E的两条切线,切点分别为A、B,取线段AB的中点,连接DM交曲线E于点N,求证:直线AB过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了个轮胎,将每个轮胎的宽度(单位: )记录下来并绘制出如下的折线图:

(1)分别计算甲、乙两厂提供的个轮胎宽度的平均值;

(2)轮胎的宽度在内,则称这个轮胎是标准轮胎.

(i)若从甲乙提供的个轮胎中随机选取个,求所选的轮胎是标准轮胎的概率

(ii)试比较甲、乙两厂分别提供的个轮胎中所有标准轮胎宽度的方差大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱柱ABC﹣A1B1C1底面△ABC的边长为3,此三棱柱的外接球的半径为 ,则异面直线AB1与BC1所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆:的离心率为y轴于椭圆相交于AB两点,CD是椭圆上异于AB的任意两点,且直线ACBD相交于点M,直线ADBC相交于点N

求椭圆的方程;

求直线MN的斜率.

查看答案和解析>>

同步练习册答案