精英家教网 > 高中数学 > 题目详情

【题目】微信运动已成为当下热门的运动方式,小王的微信朋友内也有大量好友参与了微信运动,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

性别

步数

02000

20015000

50018000

800110000

10000

1

2

3

6

8

0

2

10

6

2

1)已知某人一天的走路步数超过8000步被系统评定为积极型,否则为懈怠型,根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为评定类型性别有关?

积极型

懈怠型

总计

总计

2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X人,超过10000步的有Y人,设ξ|XY|,求E的分布列及数学期望.

附:K2na+b+c+d

PK2k0

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

【答案】1)列联表见解析,没有95%以上的把握认为评定类型性别有关;(2)分布列见解析,Eξ

【解析】

1)根据题设数据完成列联表,代入公式计算即得解;

2ξ可能的取值为012,根据独立和互斥事件的概率公式求解对应的概率得到分布列,计算期望,即得解.

1)根据题表中的数据完成2×2列表如下:

积极型

懈怠型

总计

14

6

20

8

12

20

总计

22

18

40

K23.841

没有95%以上的把握认为评定类型性别有关.

2)由题意得小王的微信好友中任选一人,其每日走路频数不超过5000步的概率为

超过10000步的概率为

XY0XY1时,ξ0

Pξ0

X1Y0X0Y1时,ξ1

Pξ1

X2Y0X0Y2时,ξ2

Pξ2

ξ的分布列为:

Ξ

0

1

2

P

Eξ

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是为参数),曲线的直角坐标方程为,将曲线上的点向下平移1个单位,然后横坐标伸长为原来的2倍,纵坐标不变,得到曲线

1)求曲线和曲线的直角坐标方程;

2)若曲线和曲线相交于两点,求三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将所有平面向量组成的集合记作是从的对应关系,记作,其中都是实数,定义对应关系的模为:在的条件下的最大值记作,若存在非零向量,及实数使得,则称的一个特殊值;

1)若,求

2)如果,计算的特征值,并求相应的

3)若,要使有唯一的特征值,实数应满足什么条件?试找出一个对应关系,同时满足以下两个条件:①有唯一的特征值,②,并验证满足这两个条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).

1)应收集多少位女生的样本数据?

2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:,估计该校学生每周平均体育运动时间超过4小时的概率;

3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有的把握认为该校学生的毎周平均体育运动时间与性别有关”.

男生

女生

总计

每周平均体育运动时间不超过4小时

每周平均体育运动时间超过4小时

总计

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了丰富学生的课外文体活动,分别开设了阅读、书法、绘画等文化活动;跑步、游泳、健身操等体育活动.该中学共有高一学生300名,要求每位学生必须选择参加其中一项活动,现对高一学生的性别、学习积极性及选择参加的文体活动情况进行统计,得到数据如下:

(1)在选择参加体育活动的学生中按性别分层抽取6名,再从这6名学生中抽取2人了解家庭情况,求2人中至少有1名女生的概率;

(2)是否有99.9%的把握认为学生的学习积极性与选择参加文化活动有关?请说明你的理由.

附:参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元).这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据y(单位:十亿元),绘制如表:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

编号x

1

2

3

4

5

6

7

8

9

10

销售额y

0.9

8.7

22.4

41

65

94

132.5

172.5

218

268

根据以上数据绘制散点图,如图所示

1)根据散点图判断,哪一个适宜作为销售额关于的回归方程类型?(给出判断即可,不必说明理由)

2)根据(1)的判断结果及如表中的数据,建立关于的回归方程,并预测2020年天猫双十一销售额;(注:数据保留小数点后一位)

3)把销售超过100(十亿元)的年份叫畅销年,把销售额超过200(十亿元)的年份叫狂欢年,从2010年到2019年这十年的畅销年中任取2个,求至少取到一个狂欢年的概率.

参考数据:

参考公式:

对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

1)求椭圆C的标准方程;

2)设F为椭圆C的左焦点,T为直线上任意一点,过FTF的垂线交椭圆C于点PQ.

i)证明:OT平分线段PQ(其中O为坐标原点);

ii)当最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了预测下月产品销售情况,找出了近7个月的产品销售量(单位:万件)的统计表:

月份代码

1

2

3

4

5

6

7

销售量(万件)

但其中数据污损不清,经查证.

(1)请用相关系数说明销售量与月份代码有很强的线性相关关系;

(2)求关于的回归方程(系数精确到0.01);

(3)公司经营期间的广告宣传费(单位:万元)(),每件产品的销售价为10元,预测第8个月的毛利润能否突破15万元,请说明理由.(毛利润等于销售金额减去广告宣传费)

参考公式及数据:,相关系数,当时认为两个变量有很强的线性相关关系,回归方程中斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某自来水公司要在公路两侧安装排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将接通.已知,公路两侧排水管费用为每米1万元,穿过公路的部分的排水管费用为每米2万元,设所成的小于的角为.

)求矩形区域内的排水管费用关于的函数关系;

)求排水管的最小费用及相应的角.

查看答案和解析>>

同步练习册答案