精英家教网 > 高中数学 > 题目详情

【题目】已知正三角形ABC边长为2,将它沿高AD翻折,使点B与点C间的距离为 ,此时四面体ABCD的外接球的表面积为

【答案】7π
【解析】解:根据题意可知三棱锥B﹣ACD的三条侧棱BD⊥AD、DC⊥DA,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,
三棱柱ABC﹣A1B1C1的中,底面边长为1,1,
由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴三棱柱ABC﹣A1B1C1的外接球的球心为O,外接球的半径为r,
棱柱的高为 ,球心到底面的距离为
三棱柱中,底面△BDC,BD=CD=1,BC= ,∴∠BDC=120°,∴△BDC的外接圆的半径为: =1
∴球的半径为r= =
外接球的表面积为:4πr2=7π.
故答案为:7π.
三棱锥B﹣ACD的三条侧棱BD⊥AD、DC⊥DA,它的外接球就是它扩展为三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆为椭圆的“伴随圆”.已知点是椭圆上的点

(1)若过点的直线与椭圆有且只有一个公共点,求被椭圆的伴随圆所截得的弦长:

(2)是椭圆上的两点,设是直线的斜率,且满足,试问:直线是否过定点,如果过定点,求出定点坐标,如果不过定点,试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若f(-1)=f(1),求a,并直接写出函数的单调增区间;

(2)当a时,是否存在实数x,使得=一?若存在,试确定这样的实数x的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.

(1)求A∩(UB);

(2)若A∪C=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班准备从甲、乙、丙等6人中选出4人参加某项活动,要求甲、乙、丙三人中至少有两人参加,那么不同的方法有 ( )

A. 18种 B. 12种 C. 432种 D. 288种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户

求抽取的6名用户中男女用户各多少人;

从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率.

(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

.635

非移动支付活跃用户

移动支付活跃用户

合计

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知直线上两点的极坐标分别为,圆的参数方程为为参数).

1)设为线段的中点,求直线的平面直角坐标方程;

2)判断直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点O为极点,O轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2(sinθ+cosθ+ ).
(1)写出曲线C的参数方程;
(2)在曲线C上任取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定理:“实数m,n为常数,若函数满足,则函数的图象关于点成中心对称”.

(1)已知函数的图象关于点成中心对称,求实数b的值;

(2)已知函数满足,都有成立,且当, ,求实数k的取值范围.

查看答案和解析>>

同步练习册答案