【题目】已知正三角形ABC边长为2,将它沿高AD翻折,使点B与点C间的距离为 ,此时四面体ABCD的外接球的表面积为 .
【答案】7π
【解析】解:根据题意可知三棱锥B﹣ACD的三条侧棱BD⊥AD、DC⊥DA,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,
三棱柱ABC﹣A1B1C1的中,底面边长为1,1, ,
由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴三棱柱ABC﹣A1B1C1的外接球的球心为O,外接球的半径为r,
棱柱的高为 ,球心到底面的距离为 ,
三棱柱中,底面△BDC,BD=CD=1,BC= ,∴∠BDC=120°,∴△BDC的外接圆的半径为: =1
∴球的半径为r= = .
外接球的表面积为:4πr2=7π.
故答案为:7π.
三棱锥B﹣ACD的三条侧棱BD⊥AD、DC⊥DA,它的外接球就是它扩展为三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积.
科目:高中数学 来源: 题型:
【题目】给定椭圆,称圆为椭圆的“伴随圆”.已知点是椭圆上的点
(1)若过点的直线与椭圆有且只有一个公共点,求被椭圆的伴随圆所截得的弦长:
(2)是椭圆上的两点,设是直线的斜率,且满足,试问:直线是否过定点,如果过定点,求出定点坐标,如果不过定点,试说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若f(-1)=f(1),求a,并直接写出函数的单调增区间;
(2)当a≥时,是否存在实数x,使得=一?若存在,试确定这样的实数x的个数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.
(1)求A∩(UB);
(2)若A∪C=C,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班准备从甲、乙、丙等6人中选出4人参加某项活动,要求甲、乙、丙三人中至少有两人参加,那么不同的方法有 ( )
A. 18种 B. 12种 C. 432种 D. 288种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合计 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户
求抽取的6名用户中,男女用户各多少人;
② 从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率.
(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | .635 |
非移动支付活跃用户 | 移动支付活跃用户 | 合计 | |
男 | |||
女 | |||
合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知直线上两点的极坐标分别为,圆的参数方程为(为参数).
(1)设为线段的中点,求直线的平面直角坐标方程;
(2)判断直线与圆的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以坐标原点O为极点,O轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2(sinθ+cosθ+ ).
(1)写出曲线C的参数方程;
(2)在曲线C上任取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定理:“实数m,n为常数,若函数满足,则函数的图象关于点成中心对称”.
(1)已知函数的图象关于点成中心对称,求实数b的值;
(2)已知函数满足,当时,都有成立,且当时, ,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com