精英家教网 > 高中数学 > 题目详情
设f(x)=x3,则对于任意实数a,b,“a+b≥0”是“f(a)+f(b)≥0”的
 
条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)
分析:利用函数f(x)=x3的单调性和奇偶性,利用充分条件和必要条件的定义进行判断.
解答:解:∵函数f(x)=x3单调递增且为奇函数,
∴若a+b≥0,则a≥-b,
∴f(a)≥f(-b)=-f(b),
∴f(a)+f(b)≥0成立.
反之也成立.
∴,“a+b≥0”是“f(a)+f(b)≥0”的充要条件.
故答案为:充要.
点评:本题主要考查充分条件和必要条件的判断,利用函数的单调性和奇偶性是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设f(x)=x3-3x2-9x+1,则不等式f′(x)<0的解集是
(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

16、设函数y=f(x)是定义在R上的奇函数,且满足f(x-2)=-f(x)对一切x∈R都成立,又当x∈[-1,1]时,f(x)=x3,则下列四个命题:①函数y=f(x)是以4为周期的周期函数;②当x∈[1,3]时,f(x)=(2-x)3; ③函数y=f(x)的图象关于x=1对称;④函数y=f(x)的图象关于(2,0)对称.其中正确的命题是
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,满足f(x-2)=-f(x).当x∈[-1,1]时,f(x)=x3,则下列四个命题:
①函数y=f(x)是以4为周期的周期函数;②当x∈[1,3]时,f(x)=(2-x)3
③函数y=f(x)的图象关于x=l对称; ④函数y=f(x)的图象关于点(3,0)对称.
其中正确的命题序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+1的导函数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R,则曲线y=f(x)在点(1,f(1))处的切线方程为
6x+2y-1=0
6x+2y-1=0

查看答案和解析>>

同步练习册答案