精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(b>a>0)的左顶点A作斜率为1的直线l,l与双曲线的两条渐近线相交于B,C两点,且|AB|=|BC|,则双曲线的离心率为(  )
A、
3
B、3
C、
10
D、10
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先根据条件求出直线l的方程,联立直线方程与渐近线方程分别求出点B,C的横坐标,结合B为AC的中点求出b,a间的关系,进而求出双曲线的离心率.
解答: 解:由题得:双曲线:的左顶点A(-a,0)
所以所作斜率为1的直线l:y=x+a,
若l与双曲线M的两条渐近线分别相交于点B(x1,y1),C(x2,y2).
联立其中一条渐近线y=-
b
a
x,解得x1=
a2
-a-b
①;
同理联立解得x2=
a2
b-a
②;
又因为|AB|=|BC|,
故B是A,C的中点,
∴x1=
x2-a
2
⇒2x1=x2-a,
把①②代入整理得:b=3a,
∴e=
c
a
=
1+32
=
10

故选:C.
点评:本题考查双曲线性质的综合运用,解题过程中要注意由|AB|=|BC|得到B是A,C的中点这以结论的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解关于x的不等式:
x3-x2-3x
x2-x-2
>x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={(x,y)|x+y<0,xy>0},N={(x,y)|x<0,y<0},那么(  )
A、N?MB、M?N
C、M=ND、M?N

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={y|y=x2+1,x∈R},Q={y|y=x2+2x,x∈R},则集合P∩Q=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集全U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3},求:A∩B,A∪B,∁UA.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,测量河对岸的塔的高度AB,可以选择与B在同一水平面内的两个点C、D.测得由C望A的仰角∠ACB=45°,方位角∠BCD═60°、∠BDC=75°,又测得C、D相距20米.试求塔的高度AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

使函数y=sin(2x+θ)+
3
cos(2x+θ)在[-
π
4
,0]上是减函数的θ的一个值为(  )
A、
π
6
B、
π
4
C、
π
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx-|1-x2|(m∈R),若f(x)在区间(-2,0)上有且只有1个零点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和为Sn=3n+a,n∈N*,则实数a的值是
 

查看答案和解析>>

同步练习册答案