精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

      某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:

每位参加者记分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;

每回答一题,记分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;

每位参加者按问题A、B、C、D顺序作答,直至答题结束。

假设甲同学对问题A、B、C、D回答正确的概率依次为,且各题回答正确与否相互之间没有影响。

(Ⅰ)求甲同学能进入下一轮的概率;

(Ⅱ)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望Εξ。

本小题主要考察离散型随机变量的分布列和数学期望,考察对立事件、独立事件的概率和求解方法,考察用概率知识解决实际问题的能力。

解:设A、B、C、D分别为敌一、二、三、四个问题,用MI(I=1,2,3,4)表示甲同学第i个问题回答正确,用N(i=1,2,3,4)表示甲同学第i个问题回答错误,则Mi与Ni是对立事件(i=1,2,3,4).由题意得

P(MI)=,P(M2)= ,P(M3)= P(M4)=

所以 p(N1)=, P(N2)= , P(N3)=, P(N4)=.…………………………

(Ⅰ)记“甲同学能进入下一轮”为事件Q,

则Q=M1M2M3+ N1M2M3M4+ M1N2M3M4+ M1M2N3M4+ N1M2N3M4

由于每题答题结果相互独立,因此

P(Q)=P(M1M2M3+ N1M2M3M4+ M1N2M3M4+ M1M2N3M4+ N1M2N3M4

      =P(M1M2M3)+ P(N1M2M3M4)+ P(M1N2M3M4)+ P(M1M2N3M4)+ P(N1M2N3M4

      = P(M1)P(M2)P(M3)+ P(N1)P(M2)P(M3)P(M4)+ P(M1)P(N2)P(M3)P(M4)+ P(M1)P(M2)P(N3)P(M4)+ P(N1)P(M2)P(N3)P(M4

     =+

=

(Ⅱ)由题意,随机变量ξ的可能取值为:2,3,4。

由于每题答题结果互相独立,所以 P(ξ=2)= P(N1 N2)= P(N1)P(N2)=

P(ξ=3)= P(M1M2M3)+ P(M1N2N3

= P(M1) P(M2)P(M3)+ P(M1) P(N2)P(N3

=

=

P(ξ=4)=1- P(ξ=2)- P(ξ=3)

=1--

=

因此 随机变量ξ的分布列为

所以Eξ=2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案