精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

1)若曲线处的切线与直线垂直,求实数的值;

2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

3)若上存在一点,使得成立,求实数的取值范围.

【答案】123

【解析】试题分析:(1)先根据导数几何意义得,解得实数的值;2,构造函数,则转化为上为增函数,即得上恒成立,参变分离得,最后根据二次函数最值求实数的取值范围;3先化简不等式,并构造函数,求导数,按导函数零点与定义区间大小关系讨论函数单调性,根据单调性确定函数最小值,根据最小值小于零解得实数的取值范围.

试题解析:解:(1)由,得. 

由题意, ,所以.          

2.

因为对任意两个不等的正数,都有恒成立,设,则恒成立.

问题等价于函数

上为增函数,    

所以上恒成立.上恒成立.

所以,即实数的取值范围是.   

3)不等式等价于,整理得.构造函数

由题意知,在上存在一点,使得.

.

因为,所以,令,得.

①当,即时, 上单调递增.只需,解得.

②当时, 处取最小值.

,可得.

,即,不等式可化为.

因为,所以不等式左端大于1,右端小于等于1,所以不等式不能成立.

③当,即时, 上单调递减,只需,解得.

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为,短轴长为2.直线l:y=kx+m与椭圆C交于M,N两点,又l与直线 分别交于A,B两点,其中点A在第一象限,点B在第二象限,且△OAB的面积为2(O为坐标原点).

(1)求椭圆C的方程;

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选择适当的证明方法证明下列问题

(1)设是公比为的等比数列且,证明数列不是等比数列.

(2)设为虚数单位,为正整数,,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一智能扫地机器人在处发现位于它正西方向的处和北偏东30°方向上的处分别有需要清扫的垃圾,红外线感应测量发现机器人到的距离比到的距离少0.4米,于是选择沿路线清扫,已知智能扫地机器人的直线行走速度为0.2,忽略机器人吸入垃圾及在处旋转所用时间,10秒钟完成了清扫任务.

1两处垃圾的距离是多少?

2)智能扫地机器人此次清扫行走路线的夹角的正弦值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:

年龄

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

人数

4

5

8

5

3

年龄

[45,50)

[50,55)

[55,60)

[60,65)

[65,70)

人数

6

7

3

5

4

经调查年龄在[25,30),[55,60)的被调查者中赞成“延迟退休”的人数分别是3人和2人.现从这两组的被调查者中各随机选取2人,进行跟踪调查.

(I)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;

(II)若选中的4人中,不赞成“延迟退休”的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

【答案】(1);.

(2).

【解析】试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得两点的坐标, 设点,代入向量,利用三角函数的值域来求得取值范围.

试题解析】

(Ⅰ)圆的参数方程为为参数).

直线的直角坐标方程为.

(Ⅱ)由直线的方程可得点,点.

设点,则 .

.

由(Ⅰ)知,则 .

因为,所以.

型】解答
束】
23

【题目】选修4-5:不等式选讲

已知函数 .

(Ⅰ)若对于任意 都满足,求的值;

(Ⅱ)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月9-25日第23届冬奥会在韩国平昌举行.4年后第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:

收看

没收看

男生

60

20

女生

20

20

(Ⅰ)根据上表说明,能否有的把握认为收看开幕式与性别有关?

(Ⅱ)现从参与问卷调查且收看了开幕式的学生中采用按性别分层抽样的方法选取8人参加2022年北京冬奥会志愿者宣传活动.

(ⅰ)问男女学生各选取多少人?

(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张型型桌子分别需要1小时和2小时,漆工油漆一张型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张型型桌子分别获利润2千元和3千元.

(1)列出满足生产条件的数学关系式,并画出可行域;

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数恰有两个不同的零点,则实数的取值范围为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案