精英家教网 > 高中数学 > 题目详情

【题目】如图是某地区2012年至2018年生活垃圾无害化处理量(单位:万吨)的折线图.

注:年份代码分别表示对应年份.

1)由折线图看出,可用线性回归模型拟合的关系,请用相关系数线性相关较强)加以说明;

2)建立的回归方程(系数精确到0.01),预测2019年该区生活垃圾无害化处理量.

(参考数据).

(参考公式)相关系数,在回归方程中斜率和截距的最小二乘估计公式分别为:.

【答案】(1)见解析;(2)1.744

【解析】

(1)根据题中所给的公式得到r=0.99>0.75,进而得到结论;(2)根据公式计算得到回归方程,再将2019年所对应的t=8代入方程可得到估计值..

(1)由题意得,

所以的线性相关程度相当高,从而可以用线性回归模型拟合的关系.

(2)由已知得

所以,关于的回归方程为:

将2019年对应的代入回归方程得:.

所以预测2019年该地区生活垃圾无害化处理量将约万吨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为两条异面直线,为两个平面,,则下列结论中错误的序号是______.

至少与中一条相交; 至多与中一条相交;

至少与中一条平行; 必与中一条相交,与另一条平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲乙两组学生,分别参加某项体能测试,所得成绩的茎叶图如图.规定测试成绩大于等于90分为优秀,8089分为良好,6079分为合格,60分以下为不合格.

1)现从甲组数据中抽取一名学生的成绩,有放回地抽取6次,记抽到优秀成绩的次数为X,求

2)从甲、乙两组学生中任取3名学生,记抽中成绩优秀的学生数为Y,求Y的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的“十八大”之后,做好农业农村工作具有特殊重要的意义.国家为了更 好地服务于农民、开展社会主义新农村工作,派调查组到农村某地区考察.该地区有100户农 民,且都从事蔬菜种植.据了解,平均每户的年收入为6万元.为了调整产业结构,当地政府决 定动员部分农民从事蔬菜加工.据统计,若动员户农民从事蔬菜加工,则剩下的继续 从事蔬菜种植的农民平均每户的年收入有望提高,而从事蔬菜加工的农民平均每户的年收入为万元.

(1)在动员户农民从事蔬菜加工后,要使剩下户从事蔬菜种植的所有农民总年收 入不低于动员前100户从事蔬菜种植的所有农民年总年收入,求的取值范围;

(2)在(1)的条件下,要使这户农民从事蔬菜加工的总年收入始终不高于户从事蔬菜种植的所有农民年总年收入,求的最大值.(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,对于,均有,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若的极小值为,求的值;

(Ⅱ)若对任意,都有恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,若,且的图象相邻的对称轴间的距离不小于.

(1)求的取值范围.

(2)若当取最大值时, ,且在中, 分别是角的对边,其面积,求周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,并且内切于定圆.

1)求动圆圆心的轨迹方程;

2)若上存在两个点,(1)中曲线上有两个点,并且三点共线,三点共线,,求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

(1)应收集多少位女生的样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.

查看答案和解析>>

同步练习册答案