精英家教网 > 高中数学 > 题目详情
阅读下面材料:
由曲线y=sinx,x∈[0,π],直线x=0,x=π及x轴围成的封闭图形的面积为2;
由曲线y=sin2x,x∈[0,
π
2
],直线x=0,x=
π
2
及x轴围成的封闭图形的面积为1;
由曲线y=sin3x,x∈[0,
π
3
],直线x=0,x=
π
3
及x轴围成的封闭图形的面积为
2
3
;…
据此猜想:由曲线y=Asin(ωx+φ),(A>0,ω>0),x∈[0,
π
ω
]
,直线x=0,x=
π
ω
及x轴围成的封
闭图形的面积为
 
考点:归纳推理
专题:推理和证明
分析:由已知中的材料,分析ω取值与直线x=0,x=
π
ω
及x轴围成的封闭图形的面积的关系,进而结合线y=sin(ωx+ϕ),(ω>0),x∈[0,
π
ω
]
,与曲线y=Asin(ωx+φ),(A>0,ω>0),x∈[0,
π
ω
]
的变换关系,可得答案.
解答: 解:由已知中:
曲线y=sinx,x∈[0,π],直线x=0,x=π及x轴围成的封闭图形的面积为2;
曲线y=sin2x,x∈[0,
π
2
],直线x=0,x=
π
2
及x轴围成的封闭图形的面积为1;
曲线y=sin3x,x∈[0,
π
3
],直线x=0,x=
π
3
及x轴围成的封闭图形的面积为
2
3


归纳可得:曲线y=sin(ωx+ϕ),(ω>0),x∈[0,
π
ω
]
,直线x=0,x=
π
ω
及x轴围成的封闭图形的面积为
2
ω

故曲线y=Asin(ωx+φ),(A>0,ω>0),x∈[0,
π
ω
]
,直线x=0,x=
π
ω
及x轴围成的封闭图形的面积为
2A
ω

故答案为:
2A
ω
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数z满足z=(z-1)•i,则复数z的模为(  )
A、1
B、
2
2
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )
A、若p∧q为假命题,则p,q均为假命题
B、命题“若x=y,则sinx=siny”为真命题
C、命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D、“x2=1”是“x=-1”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,如果AB=5,AC=3,BC=4,那么角
AB
AC
等于(  )
A、9B、12C、15D、20

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an=2an-1+2n+1(n∈N*,n≥2),a1=2.
(1)设bn=
1
2n
(an+1),求证:数列{bn}是等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设双曲线
x2
4
-
y2
9
=1
,F1,F2是其两个焦点,点M在双曲线上.
(1)若∠F1MF2=
π
2
,求△F1MF2的面积;
(2)若∠F1MF2=
π
3
,求△F1MF2的面积是多少?若∠F1MF2=120°时,△F1MF2的面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,已知若a1=
1
2
,Sn=n2an-n(n-1)(n∈N*
(Ⅰ)求a2,a3
(Ⅱ)求数列{an}的通项;
(Ⅲ)设bn=
1
SnSn+1
,数列{bn}的前n项的和为Tn,证明:Tn
5
2
(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y、z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
x
1+x2
是定义在(-1,1)上的奇函数,解不等式:f(x-1)+f(x)<0.

查看答案和解析>>

同步练习册答案