精英家教网 > 高中数学 > 题目详情
为了得到函数y=sin2x的图象,只需要把函数y=sin(2x+
π
6
)的图象(  )
A、向左平移
π
12
个单位
B、向右平移
π
12
个单位
C、向左平移
π
6
个单位
D、向右平移
π
6
个单位
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答: 解:要把函数y=sin(2x+
π
6
)=sin2(x+
π
12
)的图象向右平移
π
12
个单位,可得函数y=sin2x的图象,
故选:B.
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=f(x)在区间(-1,1)上是减函数,且f(1-a)<f(2a-1),则a的取值范围为(  )
A、(
2
3
,+∞)
B、(-∞,
2
3
)
C、(0,
2
3
)
D、(
2
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的函数f(x),满足f(xy)=f(x)+f(y),且f(
1
2
)=1,对于x,y∈(0,+∞),当且仅当x>y时f(x)<f(y).
(1)求f(1)的值;
(2)若f(-x)+f(3-x)≥-2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若tanα=-
1
2
,则
1+2sinαcosα
sin2α-cos2α
的值是(  )
A、
1
3
B、3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线x+ky-1=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为3.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
i.求证:点M恒在椭圆C上;
ii.求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanα=-2,求
sin(2π-α)•cos(π-α)-sin2(π+α)
cos(π+α)•cos(
π
2
-α)+sin2(
π
2
+α)
的值;
(2)已知sinα+cosα=
1
5
,-
π
2
<α<
π
2
,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是以π为周期的偶函数,且x∈[0,
π
2
]时,f(x)=sin x-cosx.
(1)求当x∈[
5
2
π,3π]时f(x)的解析式.
(2)求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

三个数a=0.22,b=log20.2,c=20.2,则a、b、c之间的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足条件
x-y+5≥0
x+y≥0
x≤3
,则x-2y的最小值为
 

查看答案和解析>>

同步练习册答案