精英家教网 > 高中数学 > 题目详情

【题目】经市场调查,某商品在过去的100天内的销售量(单位:)和价格(单位:)均为时间 (单位:)的函数,且销售量满足=,价格满足=.

(1)求该种商品的日销售额与时间的函数关系;

(2)若销售额超过16610,商家认为该商品的收益达到理想程度,请判断该商品在哪几天的收益达到理想程度?

【答案】(1)=

(2)天数为第53,54,…60,61,9.

【解析】试题分析:1)利用= ,通过的范围求出函数的解析式;(2)令解出的范围即可得出结论.

试题解析(1)由题意知,, = ==,

, = ==,

所求函数关系=.

(2), ==,

函数上单调递增,

= = (),

, ==,

函数上单调递减,

= = ().

若销售额超过16610,,函数单调递减,

故只有第61天满足条件.

,经计算满足条件,

又函数上单调递增,所以第53,54,…,60,满足条件.

即满足条件的天数为第53,54,…60,61,9.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知x∈[﹣1,0],θ∈[0,2π),二元函数 取最小值时,x=x0 , θ=θ0则(
A.4x00=0
B.4x00<0
C.4x00>0
D.以上均有可能.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若 ,求 的最大值;
(2)若 恒成立,求实数 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设U=R,A={x|x≤2,或x≥5},B= ,C={x|a<x<a+1}
(1)求A∪B和(UA)∩B
(2)若B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ (a>0)
(1)若函数f(x)在x=2处的切线与x轴平行,求实数a的值;
(2)讨论函数f(x)在区间[1,2]上的单调性;
(3)证明: >e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点,且与轴有唯一的交点.

(1)求的表达式;

(2)设函数,若上是单调函数,求实数的取值范围;

(3)设函数,记此函数的最小值为,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,若不等式 对任意的 恒成立,则整数λ的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:①所成角的正切值为;②;③;④平面平面,其中正确的命题序号为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)将函数化成的形式,并求函数的增区间;

(2)若函数满足:对任意都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案