精英家教网 > 高中数学 > 题目详情

【题目】两点分别在函数的图像上,且关于直线对称,则称的一对“伴点”(视为相同的一对).已知,若存在两对“伴点”,则实数的取值范围为________.

【答案】

【解析】

求出关于直线的对称图象所对应的函数解析式,画出图形,再由函数图象的平移结合新定义求解实数的取值范围.

解:设曲线关于的对称图象上的点为关于的对称点为

,代入,得

作出函数的图象如图,

函数的图象是把向左或向右平移个单位得到的.

由图可知,要使存在两对“伴点”,需要把向左平移.

,设直线,即

由圆心到直线的距离为2,得,解得(舍

设直线,即

由圆心到直线的距离为2,得,解得(舍

要使存在两对“伴点”,则实数的取值范围为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,∠BAC90°ABAC2,点MA1C1的中点,点NAB1上一动点.若点NAB1的中点且CMMN,求二面角MCNA的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实验中学在教工活动中心举办了一场台球比赛,为了节约时间比赛采取“32胜制”.现有甲、乙二人,已知每局甲胜的概率为0.6,乙胜的概率为0.4.求:

(1)这场比赛甲获胜的概率;

(2)这场比赛乙所胜局数的数学期望.

(3)这场比赛在甲获得比赛胜利的条件下,乙有一局获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ACBCOAB中点,且DC⊥平面ABCDCBE.已知ACBCDCBE2.

1)求直线ADCE所成角;

2)求二面角O-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某公司一种产品的日销售量(单位:百件)关于日最高气温(单位:)的散点图.

数据:

13

15

19

20

21

26

28

30

18

36

1)请剔除一组数据,使得剩余数据的线性相关性最强,并用剩余数据求日销售量关于日最高气温的线性回归方程

2)根据现行《重庆市防暑降温措施管理办法》.若气温超过36度,职工可享受高温补贴.已知某日该产品的销售量为53.1,请用(1)中求出的线性回归方程判断该公司员工当天是否可享受高温补贴?

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,直线的参数方程为为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

1)求实数的取值范围;

2)若,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)在等腰直角中,斜边的中点,将沿折叠得到如图(2)所示的三棱锥.若三棱锥的外接球的半径为3,则的余弦值______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市场上有一种新型的强力洗衣粉,特点是去污速度快,已知每投放)个单位的洗衣粉液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起有效去污的作用.

1)若只投放一次4个单位的洗衣液,则有效去污时间可能达几分钟?

2)若先投放2个单位的洗衣液,6分钟后投放个单位的洗衣液,要使接下来的4分钟中能够持续有效去污,试求的最小值(精确到0.1,参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为庆祝建国70周年,校园文化节举行有奖答题活动,现有AB两种题型,从A类题型中抽取1道,从B类题型中抽取2道回答,答对3道题获新华书店面值为15元的图书代金券,答对2道题获面值为10元的图书代金券,答对1道题获面值为5元的图书代金券,没有答对获面值为1元的图书代金券(作为鼓励).甲同学参加此活动答对A类题的概率为,答对B类题的概率为.

(Ⅰ)求甲答对1道题的概率;

(Ⅱ)设甲参加一次活动所获图书代金券的面值为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案