精英家教网 > 高中数学 > 题目详情
不等式|x-1|+|x+3|≤6的解集为(  )
A、[-4,2]
B、[2,+∞)
C、(-∞,-4]
D、(-∞,-4]∪[2,+∞)
考点:绝对值不等式的解法
专题:计算题,不等式的解法及应用
分析:由于|x-1|+|x+3|表示数轴上的x对应点到-3和1对应点的距离之和,当x=2或-4时,|x-1|+|x+3|=6,由此求得
不等式|x-1|+|x+3|≤6的解集.
解答: 解:|x-1|+|x+3|表示数轴上的x对应点到-3和1对应点的距离之和,
当x=2或-4时,|x-1|+|x+3|=6,故只有当x∈[-4,2]时,不等式|x-1|+|x+3|≤6成立,
故选:A.
点评:本题主要考查绝对值的意义,绝对值不等式的解法,得到当x=2或-4时,|x-1|+|x+3|=6,是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,侧视图、俯视图都是边长为1 的正方形,则此几何体的外接球的表面积为(  )
A、3π
B、4π
C、2π
D、
5
2
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an2}满足首项a12=1,且公差d=1,an>0,n∈N+
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=
1
an+1+an
,求数列{bn}的前项和Tn,并求lg(Tn+1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中公差d≠0,a1=3,a1、a4、a13成等比数列.
(Ⅰ)求an
(Ⅱ)设{an}的前n项和为Sn,求:
1
S1
+
1
S2
+…+
1
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足a2+b2=c2,c≠0,则
b
a-2c
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx,x>0
-ln(-x),x<0
,若f(a)>f(1),则实数a的取值范围是(  )
A、(-1,0)
B、(0,1)
C、(1,+∞)
D、(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论正确的是(  )
A、命题:“若sinα=sinβ,则α=β”是真命题
B、若函数f(x)可导,且在x=x0处有极值,则f′(x0)=0
C、向量
a
b
的夹角为钝角的充要条件是
a
b
<0
D、命题P:“?x∈R,ex>x+1”的否定是“?x∈R,ex<x+1”

查看答案和解析>>

科目:高中数学 来源: 题型:

某家具厂有方木料9m2,五合板60m2,准备加工成书桌和书橱出售,已知生产每张书桌需方木料0.1m3,五合板2m2;生产每个书橱需方木料0.2m3,五合板1m2,出售一张书桌可获利40元,出售一张书橱可获利60元,问怎样安排生产可使获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

给定k∈N*,设函数f:N*→N*满足:对于任意大于k的正整数n,f(n)=n-k.已知命题:k=3,当n≤3且n∈N*时,2≤f(n)≤3为真命题,则不同的函数f的个数为
 

查看答案和解析>>

同步练习册答案