精英家教网 > 高中数学 > 题目详情

【题目】已知p:x2﹣6x+5≤0,q:x2﹣2x+1﹣m2≤0(m>0).
(1)若m=2,且p∧q为真,求实数x的取值范围;
(2)若p是q充分不必要条件,求实数m的取值范围.

【答案】
(1)解:由x2﹣6x+5≤0,得1≤x≤5,

∴p:1≤x≤5;

当m=2时,q:﹣1≤x≤3.

若p∧q为真,p,q同时为真命题.,

,即1≤x≤3


(2)解:由x2﹣2x+1﹣m2≤0,得q:1﹣m≤x≤1+m.

∵p是q充分不必要条件,

∴[1,5][1﹣m,1+m],

,解得m≥4.

∴实数m的取值范围为m≥4


【解析】(1)分别求解一元二次不等式化简p,q,然后利用p∧q为真,取交集求得实数x的取值范围;(2)求解一元二次不等式化简q,结合p是q充分不必要条件,可得[1,5][1﹣m,1+m],转化为关于m的不等式组得答案.
【考点精析】掌握复合命题的真假是解答本题的根本,需要知道“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,C上一点(3,m)到焦点的距离为5.
(1)求C的方程;
(2)过F作直线l,交C于A、B两点,若线段AB中点的纵坐标为﹣1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线y=x+b与曲线 有公共点,则b的取值范围是(
A.[ ]
B.[ ,3]
C.[﹣1, ]
D.[ ,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥S﹣ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2 ,M为AB的中点.

(1)求证:AC⊥SB;
(2)求二面角S﹣CM﹣A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(1+x)﹣x,g(x)=xlnx.
(1)求函数f(x)的最大值;
(2)设0<a<b,证明0<g(a)+g(b)﹣2g( )<(b﹣a)ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC中点,则直线OE与直线PD所成角为(
A.30°
B.60°
C.45°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的奇函数f(x)= ,其中h(x)是指数函数,且h(2)=4.
(1)求函数f(x)的解析式;
(2)求不等式f(2x﹣1)>f(x+1)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ex (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是(
A.(﹣
B.(﹣
C.(﹣∞,
D.(﹣∞,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从椭圆 上一点P向x轴作垂线,垂足恰为左焦点F1 , 又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且 . (Ⅰ) 求椭圆的方程;
(Ⅱ) 若M是椭圆上的动点,点N(4,2),求线段MN中点Q的轨迹方程.

查看答案和解析>>

同步练习册答案