精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,BC∥AD,AB⊥BC,∠ADC=45°,PA⊥平面ABCD,AB=AP=1,AD=3.

(1)求异面直线PB与CD所成角的大小;

(2)求点D到平面PBC的距离.

【答案】(1); (2)见解析.

【解析】

(1)建立空间直角坐标系,利用向量法求异面直线PBCD所成角大小.

(2)求出平面PBC的一个法向量,利用向量法的距离公式求点D到平面PBC的距离.

(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立如图所示空间直角坐标系,

则P(0,0,1),B(1,0,0),C(1,2,0)D(0,3,0),

=(1,0,﹣1),=(﹣1,1,0),

设异面直线PB与CD所成角为θ,

则cosθ=,

所以异面直线PB与CD所成角大小为

(2)设平面PBC的一个法向量为=(x,y,z),

=(1,0,﹣1),=(0,2,0),=(﹣1,1,0),

,取x=1,得=(1,0,1),

∴点D到平面PBC的距离d=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,近日我渔船编队在岛周围海域作业,在岛的南偏西20°方向有一个海面观测站,某时刻观测站发现有不明船只向我渔船编队靠近,现测得与相距31海里的处有一艘海警船巡航,上级指示海警船沿北偏西40°方向,以40海里/小时的速度向岛直线航行以保护我渔船编队,30分钟后到达处,此时观测站测得间的距离为21海里.

(Ⅰ)求的值;

(Ⅱ)试问海警船再向前航行多少分钟方可到岛

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲地到乙地沿某条公路行驶一共200公里,遇到红灯个数的概率如下表所示:

红灯个数

0

1

2

3

4

5

6个及6个以上

概率

0.02

0.1

0.35

0.2

0.1

0.03

(1)求表中字母的值;

(2)求至少遇到4个红灯的概率;

(3)求至多遇到5个红灯的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业对设备进行技术升级改造,为了检验改造效果,现从设备改造后生产的大量产品中抽取了100件产品作为样本,检测一项质量指标值,统计整理为如图所示的频率分布直方图:

(1)估计该企业所生产产品的质量指标的平均数和中位数(中位数保留一位小数);

(2)若产品的质量指标在内,则该产品为残次品,生产并销售一件残次品该企业损失1万元;若产品的质量指标在范围内,则该产品为特优品,生产一件特优品该企业获利3万元.把样本中的残次品和特优品取出合并在一起,在从中任取2件产品进行销售,那么该企业收入为多少万元的可能性最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆M 的离心率与双曲线的离心率互为倒数,且内切于圆

(1)求椭圆M的方程;

(2)已知是椭圆M的下焦点,在椭圆M上是否存在点P,使的周长最大?若存在,请求出周长的最大值,并求此时的面积;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列{an},记T={x|x=aj﹣ai,i<j},若数列{an}满足:“存在t∈T,使得只要am﹣ak=t(m,k∈N*,m>k),必有am+1﹣ak+1=t”,则称数列具有性质P(t).

(1)若数列{an}满足 ,判断数列{an}是否具有性质P(2)?是否具有性质P(4)?说明理由;

(2)求证:“T是有限集”是“数列{an}具有性质P(0)”的必要不充分条件;

(3)已知{bn}是各项均为正整数的数列,且{bn}既具有性质P(2),又具有性质P(5),求证:存在正整数N,使得aN,aN+1,aN+2,…,aN+K,…是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的单调区间;

)已知f(x)x=1处取得极大值.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试证明:集合满足

(1)对每个,若,则一定不是的倍数;

(2)对每个表示中的补集),且,必存在,使的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点及圆.

1)若直线过点且被圆截得的线段长为的方程;

(2)求过点的圆的弦的中点的轨迹方程.

查看答案和解析>>

同步练习册答案