精英家教网 > 高中数学 > 题目详情
5.如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证;BC⊥平面PAC.
(2)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.

分析 (1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC内两相交直线垂直,根据线面垂直的性质可知PA⊥BC,而AC⊥BC,满足定理所需条件;
(2)根据DE⊥AE,DE⊥PE,由二面角的平面角的定义可知∠AEP为二面角A-DE-P的平面角,而PA⊥AC,则在棱PC上存在一点E,使得AE⊥PC,从而存在点E使得二面角A-DE-P是直二面角.

解答 解:(1)证明:∵PA⊥底面ABC,∴PA⊥BC.
又∠BCA=90°,∴AC⊥BC,又PA∩AC=A∴BC⊥平面PAC.
(2)∵DE∥BC,又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC.
又∵AE?平面PAC,PE?平面PAC,
∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角A-DE-P的平面角.
∵PA⊥底面ABC,∴PA⊥AC,
∴∠PAC=90°,∴在棱PC上存在一点E,使得AE⊥PC.
这时,∠AEP=90°,
故存在点E使得二面角A-DE-P是直二面角.

点评 考查线面所成角、线面垂直的判定定理以及二面角的求法,涉及到的知识点比较多,知识性技巧性都很强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=$λ\overrightarrow{a}+μ\overrightarrow{b}$,求实数λ,μ的值,使$\overrightarrow{c}⊥\overrightarrow{b}$,且|$\overrightarrow{c}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设计算法,求ax+b=0的解,并画出流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知矩形ABCD,PA⊥面ABCD,连接AC、BD、PB、PC、PD,则下列各组向量中数量积不为0的是(  )
A.$\overrightarrow{PC}$和$\overrightarrow{BD}$B.$\overrightarrow{DA}$和$\overrightarrow{PB}$C.$\overrightarrow{PD}$与$\overrightarrow{AB}$D.$\overrightarrow{PC}$与$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,M为AB的中点,点F在PA上,且2PF=FA.
(1)求证:BE⊥平面PAC;
(2)求直线AB与平面BEF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\frac{{2}^{x+1}+1}{{2}^{x}-1}$,且对于任意x∈[1,3],不等式f(x)>|x-2|+m恒成立,则m的取值范围是(  )
A.(-∞,-4]B.(-$\frac{1}{2}$,+∞)C.(-∞,-$\frac{9}{8}$)D.(-∞,$\frac{10}{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某学校高中毕业班有男生900人,女生600人,学校为了对高三学生数学学习情况进行分析,从高三年级按照性别进行分层抽样,抽取200名学生成绩,统计数据如表所示:
分数段(分)[50,70)[70,90)[90,110)[110,130)[130,150)总计
频数2040705020200
(Ⅰ)若成绩90分以上(含90分),则成绩为及格,请估计该校毕业班平均成绩及格学生人数;
(Ⅱ)如果样本数据中,有60名女生数学成绩合格,请完成如下数学成绩与性别的列联表,并判断是否有90%的把握认为“该校学生的数学成绩与性别有关”.
女生男生总计
及格人数60
不及格人数
总计
参考公式:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
 P(K2≥k0 0.10 0.050 0.010
 k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x∈R,则“x<1”是“x|x|<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l经过直线2x+y-5=0与x-2y=0的交点P,直线l1的方程为4x-y+1=0.
(Ⅰ)若直线l平行于直线l1,求l的方程;
(Ⅱ)若直线l垂直于直线l1,求l的方程.

查看答案和解析>>

同步练习册答案