精英家教网 > 高中数学 > 题目详情
(2009•淮安模拟)已知函数f(x)=lnx-x+1,x∈(0,+∞).
(1)求f(x)的单调区间和极值;
(2)设a≥1,函数g(x)=x2-3ax+2a2-5,若对于任意x0∈(0,1),总存在x1∈(0,1),使得f(x1)=g(x0)成立,求a的取值范围;
(3)对任意x∈(0,+∞),求证:
1
x+1
<ln
x+1
x
1
x
分析:(1)求函数的导数,即可得到函数的单调区间和极值;
(2)分别求出两个函数的取值范围,要使对于任意x0∈(0,1),总存在x1∈(0,1),使得f(x1)=g(x0)成立,只需2a2-5<0即可;
(3)结合(1)的结论可证后半部分,再利用构造函数的方式证明前半部分,可得答案.
解答:解:(1)∵函数f(x)=lnx-x+1,x∈(0,+∞),∴f′(x)=
1
x
-1
令其为0可得x=1,
并且当x∈(0,1)时,f′(x)>0,函数f(x)单调递增,
当x∈(1,+∞)时,f′(x)<0,函数f(x)单调递减,
故f(x)在x=1处取到极大值f(1)=0
(2)由(1)知,当x1∈(0,1)时,f′(x)>0,函数f(x)单调递增,
故f(x1)<f(1)=0,
因为a≥1,函数g(x)=x2-3ax+2a2-5,为开口向上的抛物线,对称轴为x=
3a
2
3
2

故函数g(x)在区间(0,1)上为减函数,故g(1)<g(x0)<g(0),
即g(x0)<2a2-5,
要使对于任意x0∈(0,1),总存在x1∈(0,1),使得f(x1)=g(x0)成立,
只需2a2-5<0即可,解得-
10
2
<a<
10
2

结合a≥1可得1≤a<
10
2

(3)由(1)可知f(x)在x=1处取到极大值f(1)=0,也是最大值,
故f(x)≤f(1)=0,即lnx-x+1≤0,即lnx≤x-1,当x=1时取等号,
可证ln
x+1
x
=ln(1+
1
x
)≤(1+
1
x
)-1=
1
x
,又1+
1
x
≠1
,故ln
x+1
x
1
x

构造函数F(x)=
1
x+1
-ln
x+1
x
,则F′(x)=-
1
(x+1)2
-
x
x+1
(-
1
x2
)
=
1
x(x+1)2
>0
即函数F(x)在x∈(0,+∞)上单调递增,当x趋向于正无穷大时,F(x)趋向于0,
故F(x)<0,即
1
x+1
<ln
x+1
x

故有
1
x+1
<ln
x+1
x
1
x
点评:本题为函数导数的综合应用,构造函数通过导数来解决问题是关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•淮安模拟)若关于x的不等式x2+9+|x2-3x|≥kx在[1,5]上恒成立,则实数k的范围为
(-∞,6]
(-∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淮安模拟)已知U为实数集,集合M={x|0<x<2},N={x|y=
x-1
}
,则M∩(?UN)=
{x|0<x<1}
{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淮安模拟)若向圆x2+y2=4所围成的区域内随机地丢一粒豆子,则豆子落在直线x-y+2=0上方的概率是
1
4
-
1
1
4
-
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淮安模拟)某同学在求方程lgx=2-x的近似解(精确到0.1)时,设f(x)=lgx+x-2,发现f(1)<0,f(2)>0,他用“二分法”又取了4个值,通过计算得到方程的近似解为x≈1.8,那么他所取的4个值中的第二个值为
1.75
1.75

查看答案和解析>>

同步练习册答案