精英家教网 > 高中数学 > 题目详情

【题目】设函数,若曲线上存在,使得成立,则实数的取值范围为( )

A. B. C. D.

【答案】D

【解析】1cosx1

∴当cosx=1, 取得最小值

cosx=1, 取得最大值

即函数的取值范围为[1,e]

上存在点(x0,y0)使得f(f(y0))=y0成立,

y0[1,e].f(y0)=y0.

若下面证明f(y0)=y0.

假设f(y0)=c>y0,f(f(y0))=f(c)>f(y0)=c>y0,不满足f(f(y0))=y0.

同理假设f(y0)=c<y0,则不满足f(f(y0))=y0.

综上可得:f(y0)=y0.y0[1,e].

∵函数的定义域为(0,+∞)

∴等价为,(0,e]上有解

即平方得lnx+x+m=x2

a=x2lnxx

h(x)=x2lnxx,

h′(x)>01<x<e,此时函数单调递增,

h′(x)<00<x<1,此时函数单调递减,

即当x=1,函数取得极小值,h(1)=1ln11=0

x=e,h(e)=e2lnee=e2e1

0h(x)e2e1.

0me2e1.

本题选择D选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是边长为的棱形,且分别是的中点.

(1)证明:平面

(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在各棱长均为4的直四棱柱中,底面为菱形, 为棱上一点,且.

(1)求证:平面平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中__________为真命题(把所有真命题的序号都填上).

①“”成立的必要条件是“”;

②“若成等差数列,则”的否命题;

③“已知数列的前项和为,若数列是等比数列,则成等比数列.”的逆否命题;

④“已知上的单调函数,若,则”的逆命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn满足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,点A(1,1),B(0,﹣2),C(4,2),D为AB的中点,DE∥BC. (Ⅰ)求BC边上的高所在直线的方程;
(Ⅱ)求DE所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教育学家分析发现加强语文乐队理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲乙两个同轨班级进行试验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面的列联表(单位:人)

(1)能够据此判断有97.5%把握热内加强语文阅读训练与提高数学应用题得分率有关?

(2)经过多次测试后,小明正确解答一道数学应用题所用的时间在5—7分钟,小刚正确解得一道数学应用题所用的时间在6—8分钟,现小明、小刚同时独立解答同一道数学应用题,求小刚比小明现正确解答完的概率;

(3)现从乙班成绩优秀的8名同学中任意抽取两人,并对他们点答题情况进行全程研究,记A、B两人中被抽到的人数为X,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,关于的不等式只有两个整数解,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题;
(1)求分数在[50,60)的频率及全班的人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)根据频率分布直方图,估计该班数学成绩的平均数与中位数.

查看答案和解析>>

同步练习册答案