精英家教网 > 高中数学 > 题目详情

【题目】满足约束条件,若取得最大值的最优解不唯一,则实数的值为( )

A. B. 2 C. 2 D.

【答案】D

【解析】分析:由约束条件作出可行域,将化为,z相当于的纵截距,由几何意义可得。

详解:由题中约束条件作可行域如下图所示:

化为,即直线的纵截距取得最大值时的最优解不唯一。

时,直线经过点A(-2,-2)时纵截距最大,此时最优解仅有一个,故不符合题意;

a=2时,直线重合时纵截距最大,此时最优解不唯一,故符合题意;

时,直线经过点B(0,2)时纵截距最大,此时最优解仅有一个,故不符合题意;

a=-1时,直线y=-x+2重合时纵截距最大,此时最优解不唯一,故符合题意;

a<-1时,直线经过点C(2,0)时纵截距最大,此时最优解仅有一个,故不符合题意。

综上,当a=2a=-1时最优解不唯一,符合题意。

故本题正确答案为D。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年3月山东省高考改革实施方案发布:2020年夏季高考开始全省高考考生总成绩将由语文、数学、外语三门统一高考成绩和学生自主选择的普通高中学业水平等级性考试科目的成绩共同构成.省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.右面是根据样本的调查结果绘制的等高条形图.

(Ⅰ)请根据已知条件与等高条形图完成下面的列联表:

赞成

不赞成

合计

城镇居民

农村居民

合计

(Ⅱ)试判断我们是否有95%的把握认为“赞成高考改革方案与城乡户口有关”?.

【附】,其中.

0.150

0.100

0.050

0.005

0.001

2.072

2.706

3.841

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是(
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是(

A.90cm2
B.129cm2
C.132cm2
D.138cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记max{x,y}= ,min{x,y}= ,设 为平面向量,则(
A.min{| + |,| |}≤min{| |,| |}
B.min{| + |,| |}≥min{| |,| |}
C.max{| + |2 , | |2}≤| |2+| |2
D.max{| + |2 , | |2}≥| |2+| |2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设每一架飞机的引擎在飞行中出现故障率为,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机也可成功飞行,要使4引擎飞机比2引擎飞机更安全,则的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=

(1)证明:DE⊥平面ACD;
(2)求二面角B﹣AD﹣E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数

的最大值为0,记,求的值;

时,记不等式的解集为M,求函数的值域是自然对数的底数

时,讨论函数的零点个数.

查看答案和解析>>

同步练习册答案