【题目】2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.在党和政府强有力的抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失.为降低疫情影响,某厂家拟在2020年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元()满足(为常数),如果不搞促销活动,则该产品的年销售量只能是2万件.已知生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(此处每件产品年平均成本按元来计算)
(1)将2020年该产品的利润万元表示为年促销费用万元的函数;
(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?
科目:高中数学 来源: 题型:
【题目】过原点的一条直线与椭圆=1(a>b>0)交于A,B两点,以线段AB为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是公差不为零的等差数列,满足,且、、成等比数列.
(1)求数列的通项公式;
(2)设数列满足,求数列的前项和.
【答案】(1);(2)
【解析】试题分析:(1)设等差数列 的公差为,由a3=7,且、、成等比数列.可得,解之得即可得出数列的通项公式;
2)由(1)得,则,由裂项相消法可求数列的前项和.
试题解析:(1)设数列的公差为,且由题意得,
即 ,解得,
所以数列的通项公式.
(2)由(1)得
,
.
【题型】解答题
【结束】
18
【题目】四棱锥的底面为直角梯形,,,,为正三角形.
(1)点为棱上一点,若平面,,求实数的值;
(2)求点B到平面SAD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.
参考公式: , .
参考数据: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角坐标系xOy中,已知MN是圆C:(x﹣2)2+(y﹣3)2=2的一条弦,且CM⊥CN,P是MN的中点.当弦MN在圆C上运动时,直线l:x﹣y﹣5=0上总存在两点A,B,使得恒成立,则线段AB长度的最小值是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是两条不同的直线, 是两个不同的平面,则下列命题中正确的是( )
A. 若, ,则
B. 若, ,则
C. 若, , ,则
D. 若,且,点,直线,则
【答案】C
【解析】A. 若, ,则或;
B. 若, ,则无交点,即平行或异面;
C. 若, , ,过作平面与分别交于直线s,t,则, ,所以t,再根据线面平行判定定理得,因为, ,所以,即
D. 若,且,点,直线,当B在平面内时才有,
综上选C.
【题型】单选题
【结束】
11
【题目】甲、乙、丙、丁四位同学参加比赛,只有其中三位获奖.甲说:“乙或丙未获奖”;乙说:“甲、丙都获奖”;丙说:“我未获奖”;丁说:“乙获奖”.四位同学的话恰有两句是对的,则( )
A. 甲和乙不可能同时获奖 B. 丙和丁不可能同时获奖
C. 乙和丁不可能同时获奖 D. 丁和甲不可能同时获奖
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是某省从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.
若该省从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列,的前n项和为,则下列说法中正确的是( )
A.数列是递增数列B.数列是递增数列
C.数列的最大项是D.数列的最大项是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com