精英家教网 > 高中数学 > 题目详情

设复数z1、z2满足z1·z2+2iz1-2iz2+1=0,-z1=2i,求z1和z2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设复数z1,z2满足z1z2+2i z1-2i z2+1=0.
(Ⅰ)若z1,z2满足
.
z2
-z1=2i,求z1,z2
(Ⅱ)若|z1|=
3
,是否存在常数k,使得等式|z2-4 i|=k恒成立,若存在,试求出k;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z1和z2满足关系式z1
.
z
2
+
.
A
z1+A
.
z
2
=0
,其中A为不等于0的复数.
证明:(1)|z1+A||z2+A|=|A|2;(2)
z1+A
z2+A
=|
z1+A
z2+A
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)(1)设复数z满足z•
.
z
=9
,且(1+2i)z为纯虚数,求复数z;
(2)设复数z1,z2满足|z1|=|z2|=1,且|z1+z2|=
2
,求|z1-z2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z1,z2满足z1z2+2iz1-2iz2+1=0,
.
z2
-z1=2i
,求z1和z2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设复数z1,z2满足z1z2+2i z1-2i z2+1=0.
(Ⅰ)若z1,z2满足
.
z2
-z1=2i,求z1,z2
(Ⅱ)若|z1|=
3
,是否存在常数k,使得等式|z2-4 i|=k恒成立,若存在,试求出k;若不存在说明理由.

查看答案和解析>>

同步练习册答案