精英家教网 > 高中数学 > 题目详情

【题目】已知A={x|x2≥9},B={x|﹣1<x≤7},C={x||x﹣2|<4}.

(1)求A∩B及A∪C;

(2)若U=R,求.

【答案】(1) A∩B={x|3≤x≤7},A∪C={x|x≤﹣3或x>﹣2} (2) A∩U(B∩C)={x|x≥6或x≤﹣3}

【解析】试题分析:首先解不等式,化简集合A和C,再利用集合运算求出集合A与B的交集及集合A与C的并集;再求出集合B与C的交集,再求出B和C交集的补集,最后再求与集合A的交集.解题时注意集合的交、并、补的运算的定义,无限数集求交、并、补时,使用的工具是数轴.

试题解析:

(1)集合A中的不等式解得:x≥3或x≤﹣3,即A={x|x≥3或x≤﹣3};

集合C中的不等式解得:﹣2<x<6,即C={x|﹣2<x<6},

∴A∩B={x|3≤x≤7},A∪C={x|x≤﹣3或x>﹣2};

(2)∵B∩C={x|﹣1<x<6},全集U=R,

U(B∩C)={x|x≤﹣1或x≥6},

则A∩U(B∩C)={x|x≥6或x≤﹣3}

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着电子商务的发展,人们的购物习惯正在改变,基本上所有的需求都可以通过网络购物解决.小王是位网购达人,每次购买商品成功后都会对电商的商品和服务进行评价.现对其近年的200次成功交易进行评价统计,统计结果如下表所示.

对服务好评

对服务不满意

合计

对商品好评

80

40

120

对商品不满意

70

10

80

合计

150

50

200

1)是否有的把握认为商品好评与服务好评有关? 请说明理由;

2)现从这200次交易中,按照对商品好评对商品不满意采用分层抽样取出5次交易,然后从这5次交易中任选两次进行观察,求这两次交易中恰有一次对商品好评的概率.

附:(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

,则的最大值为________

若函数有两个零点,则的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,则下列四个命题正确的是(

A.直线BC与平面所成的角等于B.C到面的距离为

C.两条异面直线所成的角为D.三棱柱外接球表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B两点都在以PC为直径的球O的表面上,AB⊥BC,AB=2,BC=4,若球O的体积为,则三棱锥P-ABC表面积为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药公司研发一种新的保健产品,从生产的一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:

(Ⅰ)求,并试估计这200盒产品的该项指标的平均值;

(Ⅱ)国家有关部门规定每盒产品该项指标值不低于150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中为优良,不高于185为合格,不低于215为优秀.用样本的该项质量指标值的频率代替产品的该项质量指标值的概率.

①求产品该项指标值的优秀率;

②现从这批产品中随机抽取3盒,求其中至少有1盒该项质量指标值为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:得到如图所示的频率分布直方图.

(Ⅰ)求的值;

(Ⅱ)记表示事件从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于80,估计的概率;

(Ⅲ)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀.请在答题卡上将列联表补充完整,并判断是否有的把握认为比赛成绩是否优秀与性别有关

参考公式及数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面使用类比推理,得到的结论正确的是( )

A. 直线,若,则.类比推出:向量,若,则.

B. 三角形的面积为,其中为三角形的边长,为三角形内切圆的半径,类比推出,可得出四面体的体积为,(分别为四面体的四个面的面积,为四面体内切球的半径)

C. 同一平面内,直线,若,则.类比推出:空间中,直线,若,则.

D. 实数,若方程有实数根,则.类比推出:复数,若方程有实数根,则.

查看答案和解析>>

同步练习册答案