精英家教网 > 高中数学 > 题目详情
14.${∫}_{1}^{2}$(x+2x)dx等于(  )
A.(x+2x)|${\;}_{1}^{2}$B.(x2+2xln2)|${\;}_{1}^{2}$
C.($\frac{{x}^{2}}{2}$+2x)|${\;}_{1}^{2}$D.($\frac{{x}^{2}}{2}$+$\frac{{2}^{x}}{ln2}$)|${\;}_{1}^{2}$

分析 根据定积分的计算法则计算即可.

解答 解:${∫}_{1}^{2}$(x+2x)dx=($\frac{1}{2}$x2+$\frac{{2}^{x}}{ln2}$)|${\;}_{1}^{2}$,
故选:D.

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是等差数列,数列{bn}是各项均为正数的等比数列,且a1=b1=3,a2+b2=14,a3+a4+a5=b3
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=an+bn,n∈N*,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.判断函数f(x)=$\frac{1}{{x}^{2}}$+$\frac{4}{x}$+3的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,半径为4的球O中有一内接圆往,则圆柱的侧面积最大值是32π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ACB=90°,四边形ACED是直角梯形,∠DAC=90°,AD∥CE,AD=AC=2CE=2,BC⊥CE,点F是AB的中点.
(1)求证:CF∥平面BDE;
(2)若$\overrightarrow{BG}$=λ$\overrightarrow{BD}$,AG和平面BDE所成的角的余弦值是$\frac{1}{3}$,试确定点G的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=$\frac{{x}^{2}+2x+3}{{x}^{2}+x+2}$在区间[0,+∞)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图细图所示,则该几何体的体积为(  )
A.12B.13C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题P:方程$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{3-m}$=1表示双曲线:命题q:抛物线y2=mx(m>0)的焦点到其准线的距离大于1,已知p∨q为真,p∧q为假,则实败m的取值范围为-2≤m≤2或m≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.角速度为$\frac{π}{4}$的质点P从点(-1,0)逆时针沿单位圆x2+y2=1运动,经过17个时间单位后,点P的坐标是(  )
A.($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)B.(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)C.($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)D.(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)

查看答案和解析>>

同步练习册答案