精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求函数处的切线方程,并求函数的最大值;

(2)若函数的两个零点分别为,且,求证:.

【答案】(1);(2)见解析

【解析】

1)当时,求得斜率和切点的坐标,利用点斜式写出切线方程.根据函数的导数求得函数的单调区间,由此求得函数的最大值.2)将两个零点代入函数的解析式,将得到两个方程相减,化简为的表达式,通过令,将所要证明的不等式转化为证明,构造函数,利用导数证明,由此证得原不等式成立.

(1)解:当时,

,切点为,故函数处的切线方程为.

,则是减函数,

,∴

上是增函数,在是减函数,.

(2)证明:∵的两个零点,不妨设

相减得:

,即证

上是增函数,又∵

,命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】华为董事会决定投资开发新款软件,估计能获得万元到万元的投资收益,讨论了一个对课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过投资收益的.

1)请分析函数是否符合华为要求的奖励函数模型,并说明原因;

2)若华为公司采用模型函数作为奖励函数模型,试确定正整数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,,平面平面.

(1)求证:

(2)若,直线与平面所成角为的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程和的直角坐标方程;

2)设是曲线上一点,此时参数,将射线绕原点逆时针旋转交曲线于点,记曲线的上顶点为点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前n项和,且满足,数列是首项为2,公比为q)的等比数列.

1)求数列的通项公式;

2)设正整数ktr成等差数列,且,若,求实数q的最大值;

3)若数列满足,其前n项和为,当时,是否存在正整数m,使得恰好是数列中的项?若存在,求岀m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数g(x)ax2bxc(a≠0)满足g(x1)2xg(x),且g(0)1.

1)求g(x)的解析式;

2)若在区间[1,1]上,不等式g(x)-t>2x恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.

(1)依据数据的散点图可以看出,可用线性回归模型拟合的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);

(2)求关于的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?

附:相关系数公式,参考数据:.

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性并指出相应单调区间;

2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间;

2)若函数有两个零点().

i)求的取值范围;

ii)求证:随着的增大而增大.

查看答案和解析>>

同步练习册答案