【题目】一个几何体的三视图如图所示,若该几何体的外接球表面积为,则该几何体的体积为( )
A. B. C. D.
【答案】B
【解析】
先将几何体还原得四棱锥P-ABCD,做底面中心的垂线,通过列方程找到球心的位置,进而再求四棱锥的高,从而可得体积.
由三视图可知该几何体为四棱锥P-ABCD,其中ABCD是边长为2的正方形,侧面PBC垂直于底面ABCD,为等腰三角形.
设BC的中点为F,四边形ABCD的中心为点H,连接PF,FH,过点H作平面ABCD的垂线,则球心在该直线上,即为点O,过点O作于点E,连接OP.
设四棱锥P-ABCD的外接球半径为R,由其表面积为,得,解得.
设OH=x,则在直角三角形OHB中,有,解得.
在直角三角形POE中,,所以,解得.(负值已舍去)
所以PF=PE+EF=2.
所以四棱锥P-ABCD的体积.
故选B.
科目:高中数学 来源: 题型:
【题目】设椭圆:的离心率为,椭圆上一点到左右两个焦点、的距离之和是4.
(1)求椭圆的方程;
(2)已知过的直线与椭圆交于、两点,且两点与左右顶点不重合,若,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如下图所示,则关于这三家企业下列说法错误的是( )
A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业
C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知点为抛物线的焦点,点在抛物线上,且.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年,我国继续实行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取50人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的50人中,享受至少两项专项附加扣除的员工有5人,分别记为.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这5人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E |
子女教育 | ○ | ○ | × | ○ | × |
继续教育 | × | × | ○ | × | ○ |
大病医疗 | × | ○ | × | ○ | × |
住房贷款利息 | ○ | ○ | × | × | ○ |
住房租金 | × | × | ○ | ○ | × |
赡养老人 | ○ | ○ | × | × | × |
(1)试用所给字母列举出所有可能的抽取结果;
(2)设为事件“抽取的2人享受的专项附加扣除全都不相同”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小王投资1万元2万元、3万元获得的收益分别是4万元、9万元、16万元为了预测投资资金x(万元)与收益y万元)之间的关系,小王选择了甲模型和乙模型.
(1)根据小王选择的甲、乙两个模型,求实数a,b,c,p,q,r的值
(2)若小王投资4万元,获得收益是25.2万元,请问选择哪个模型较好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】西北某省会城市计划新修一座城市运动公园,设计平面如图所示:其为五边形,其中三角形区域为球类活动场所;四边形为文艺活动场所,,为运动小道(不考虑宽度),,千米.
(1)求小道的长度;
(2)求球类活动场所的面积最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com