精英家教网 > 高中数学 > 题目详情
精英家教网如图:已知圆上的弧
AC
=
BD
,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.
分析:(I)先根据题中条件:“
AC
=
BD
”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.
(II)欲证BC2=BE x CD.即证
BC
BE
=
CD
BC
.故只须证明△BDC~△ECB即可.
解答:解:(Ⅰ)因为
AC
=
BD

所以∠BCD=∠ABC.
又因为EC与圆相切于点C,
故∠ACE=∠ABC
所以∠ACE=∠BCD.(5分)
(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,
所以△BDC~△ECB,
BC
BE
=
CD
BC

即BC2=BE×CD.(10分)
点评:本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,圆O的方程为:x2+y2=4.
(Ⅰ)已知点A的坐标为(2,0),B为圆周上任意一 点,求弧长
AB
小于π的概率;
(Ⅱ)若P(x,y)为圆O内任意一点,求点P到原点距离大于
2
的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浦东新区二模)(1)设椭圆C1
x2
a2
+
y2
b2
=1
与双曲线C29x2-
9y2
8
=1
有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值; 
(3)由抛物线弧E1:y2=4x(0≤x≤
2
3
)与第(1)小题椭圆弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求
r1
r2
的取值范围.

查看答案和解析>>

科目:高中数学 来源:训练必修四数学人教A版 人教A版 题型:044

如图,已知圆上一点A(1,0)按逆时针方向做匀速圆周运动,1秒钟时间转过(0<≤π)角,经过2秒钟到达第三象限,经过14秒钟又转到与最初位置重合的位置,求角的弧度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设椭圆C1数学公式与双曲线C2数学公式有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为数学公式.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值;
(3)由抛物线弧E1:y2=4x(0数学公式)与第(1)小题椭圆弧E2数学公式数学公式)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求数学公式的取值范围.

查看答案和解析>>

科目:高中数学 来源:黑龙江省模拟题 题型:解答题

选做题
如图,已知圆上的弧AC=弧BD,过C的圆的切线与的A长线交于点。
(1)证明:
(2)若,求的长

查看答案和解析>>

同步练习册答案