ÒÑÖªº¯Êýf(x)=£¬aR£®

(1)Èç¹ûº¯ÊýµÄ¶¨ÒåÓòΪ [a+1£¬a+2]ʱ£¬Çóº¯ÊýµÄÖµÓò£»

(2)¶ÔÈÎÒ⣬º¯ÊýµÄͼÏóÊÇÖÐÐĶԳÆͼÐΣ¬ÊÔÖ¤Ã÷ËùÓжԳÆÖÐÐľùÔÚͬһÌõÖ±ÏßÉÏ£»

(3)ÎÒÃÇÀûÓú¯Êýy=f(x)¹¹ÔìÒ»¸öÊýÁÐ{x}£¬·½·¨ÈçÏ£º¶ÔÓÚ¸ø¶¨µÄ¶¨ÒåÓòÖеÄx£¬Áîx=f(x)£¬x=f(x)£¬¡­£¬x=f(x£­1)£¬¡­

ÔÚÉÏÊö¹¹ÔìÊýÁеĹý³ÌÖУ¬Èç¹ûx(i=2£¬3£¬4£¬¡­)ÔÚ¶¨ÒåÓòÖУ¬¹¹ÔìÊýÁеĹý³Ì½«¼ÌÐøÏÂÈ¥£»Èç¹ûx²»ÔÚ¶¨ÒåÓòÖУ¬Ôò¹¹ÔìÊýÁеĹý³ÌÍ£Ö¹£®

¢ÙÈç¹û¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸ö³£ÊýÁÐ{x}£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»

¢ÚÈç¹ûÈ¡¶¨ÒåÓòÖÐÈÎÒ»Öµ×÷Ϊx£¬¶¼¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{x}£¬ÇóʵÊýaµÄÖµ£®

´ð°¸£º
½âÎö£º

£»£»»ò£»

½â£ºÔÚÉÏÊÇÔöº¯Êý£¬ÓÖ£¬£¬

(2)Ö¤Ã÷£º¸ù¾Ýº¯ÊýµÄͼÏó¿ÉÖªº¯ÊýͼÏñµÄ¶Ô³ÆÖÐÐÄΪ£®

ÉèµãÊǺ¯ÊýͼÏóÉÏÈÎÒ»µã£¬Ôò£¬µã¹ØÓÚµãµÄ¶Ô³ÆµãΪ.

£¬¼´µãÔÚº¯ÊýµÄͼÏóÉÏ£¬ËùÒÔº¯ÊýµÄͼÏó¹ØÓÚµã³ÉÖÐÐĶԳÆͼÐΣ®

¶ÔÈÎÒâʵÊýº¯ÊýͼÏóµÄ¶Ô³ÆÖÐÐľùΪ£¬ËùÓжԳÆÖÐÐľùÔÚÖ±ÏßÉÏ£®

£¨3£©¢Ù¸ù¾ÝÌâÒ⣬ֻÐèʱ£¬Óн⣬¼´Óн⣬¼´Óв»µÈÓڵĽ⣮

½«´úÈë·½³Ì×ó±ß£¬µÃ×ó±ß=1£¬¹Ê·½³Ì²»¿ÉÄÜÓн⣮

ÓÉ¡÷0ʱ£¬µÃ»ò£¬¼´ÎªËùÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

¢Ú¸ù¾ÝÌâÒ⣬ ÔÚRÖÐÎ޽⣬¼´Ê±£¬Î޽⣮

ÓÉÓÚ²»ÊÇ·½³ÌµÄ½â£¬ËùÒÔ¶ÔÓÚÈÎÒ⣬Î޽⣮

£¬¼´ÎªËùÇóaÓÐÖµ£®


Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
3x+5£¬(x¡Ü0)
x+5£¬(0£¼x¡Ü1)
-2x+8£¬(x£¾1)
£¬
Çó£¨1£©f(
1
¦Ð
)£¬f[f(-1)]
掙术
£¨2£©Èôf£¨a£©£¾2£¬ÔòaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf(x)=
(1-3a)x+10ax¡Ü7
ax-7x£¾7.
ÊǶ¨ÒåÓòÉϵĵݼõº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢(
1
3
£¬1)
B¡¢£¨
1
3
£¬
1
2
]
C¡¢£¨
1
3
£¬
6
11
]
D¡¢[
6
11
£¬1
£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
|x-1|-a
1-x2
ÊÇÆ溯Êý£®ÔòʵÊýaµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
2x-2-x2x+2-x

£¨1£©Çóf£¨x£©µÄ¶¨ÒåÓòÓëÖµÓò£»
£¨2£©ÅжÏf£¨x£©µÄÆæżÐÔ²¢Ö¤Ã÷£»
£¨3£©Ñо¿f£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
x-1x+a
+ln(x+1)
£¬ÆäÖÐʵÊýa¡Ù1£®
£¨1£©Èôa=2£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èôf£¨x£©ÔÚx=1´¦È¡µÃ¼«Öµ£¬ÊÔÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸