精英家教网 > 高中数学 > 题目详情

设△ABC的三内角A、B、C成等差数列,sinA、sinB、sinC成等比数列,则这个三角形的形状是


  1. A.
    直角三角形
  2. B.
    钝角三角形
  3. C.
    等腰直角三角形
  4. D.
    等边三角形
D
分析:先由△ABC的三内角A、B、C成等差数列,求得∠B=60°,∠A+∠C=120°①;再由sinA、sinB、sinC成等比数列,得sin2B=sinA•sinC,②,①②结合即可判断这个三角形的形状.
解答:∵△ABC的三内角A、B、C成等差数列,
∴∠B=60°,∠A+∠C=120°①;
又sinA、sinB、sinC成等比数列,
∴sin2B=sinA•sinC=,②
由①②得:sinA•sin(120°-A)
=sinA•(sin120°cosA-cos120°sinA)
=sin2A+
=sin2A-cos2A+
=sin(2A-30°)+
=
∴sin(2A-30°)=1,又0°<∠A<120°
∴∠A=60°.
故选D.
点评:本题考查数列与三角函数的综合,关键在于求得∠B=60°,∠A+∠C=120°,再利用三角公式转化,着重考查分析与转化的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定义函数f(x)=
m
n
-
1
2

(1) 求函数.f(x)的最小正周期,值域,单调增区间.
(2) 设△ABC的三内角A,B,C所对的边分别为a、b、c,且c=
3
,f(C)=0,若
d
=(1,sinA)与
e
=(2,sinB)
共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三内角A、B、C所对边的长分别为a、b、c,平面向量
m
=(cosA,cosC),
n
=(c,a),
p
=(2b,0),且
m
•(
n
-
p
)=o.
(1)求角A的大小;
(2)当|x|≤A时,求函数f(x)=
1
2
sinxcosx+
3
2
sin2x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三内角A、B、C成等差数列,sinA=
3
2
,则这个三角形的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 
m
=(
3
sinx,cosx),
n
=(cosx,-cosx),x∈R,定义函数f(x)=
m
n
-
1
2

(1)求函数f(x)的最小正周期,值域,单调增区间.
(2)设△ABC的三内角A,B,C所对的边分别为a、b、c,且c=
3
,f(C)=0,若向量
d
=(1,sinA)与 
e
=(2,sinB)共线,求边a,b的值及△ABC的面积S?

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三内角A、B、C成等差数列,三边 a,b,c成等比数列,则这个三角形的形状是(  )

查看答案和解析>>

同步练习册答案