精英家教网 > 高中数学 > 题目详情

【题目】已知为椭圆的左右焦点,点在椭圆上,且.

(1)求椭圆的方程;

(2)过的直线分别交椭圆,且,问是否存在常数,使得等差数列?若存在,求出的值,若不存在,请说明理由.

【答案】(1) ;(2)答案见解析.

【解析】试题分析:

1)由已知可得,将 代入 可得

2的斜率为零或斜率不存在时, =

的斜率存在且时, 的方程为

代入椭圆方程,并化简得

,应用韦达定理,弦长公式

由直线的斜率为,得到,计算得到=,求得.

试题解析:

1)因为,所以

所以 ,将P代入可得

所以椭圆的方程为

2的斜率为零或斜率不存在时, =

的斜率存在且时, 的方程为

代入椭圆方程,并化简得

,则

因为直线的斜率为

所以

=

综上,

所以,存在常数使得成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一矩形的一边在轴上,另两个顶点在函数的图像上,如图,则此矩形绕轴旋转而成的几何体的体积的最大值是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调区间;

(2)若函数处取得极值,对任意恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A(1)五人站一排,必须站右边,则不同的排法有多少种;

(2)晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2 个节目插入原节目单中,则不同的插法有多少种.

B.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把小球放入盒子里.

①小球全部放入盒子中有多少种不同的放法;

②恰有一个盒子没放球有多少种不同的放法;

③恰有两个盒子没放球有多少种不同的放法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆两点,点在直线上的射影依次为.

(1)求椭圆的方程;

(2)若直线轴于点,且,当变化时,证明: 为定值;

(3)当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前n项和满足

1)求数列的通项公式;

2)若nN*),求数列的前n项和;

3)是否存在实数使得恒成立,若存在,求实数的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.如图,可以发现,任何一个大于1的“正方形数”都可以看作两个相邻的“三角形数”之和,下列等式中,符合这一规律的表达式是( )

①13=3+10;②25=9+16;③36=15+21;④49=18+31;⑤64=28+36.

A. ①④B. ②⑤C. ③⑤D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,过的直线交椭圆于两点,若椭圆的离心率为的周长为16.

(1)求椭圆的方程;

(2)设不经过椭圆的中心而平行于弦的直线交椭圆于点,设弦的中点分别为.证明:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若不等式的解集为,求的取值范围;

(2)当时,解不等式

(3)若不等式的解集为,若,求的取值范围.

查看答案和解析>>

同步练习册答案