精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C1的参数方程为 (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ. (Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

【答案】解:(Ⅰ)曲线C1的参数方程为 (t为参数), 则曲线C1的普通方程为(x﹣5)2+(y﹣4)2=25,
曲线C1的极坐标方程为ρ2﹣10ρcosθ﹣8ρsinθ+16=0.
(Ⅱ)曲线C1的极坐标方程ρ2﹣10ρcosθ﹣8ρsinθ+16=0,曲线C2的极坐标方程为ρ=2cosθ,联立得 ,又θ∈[0,2π),则θ=0或
当θ=0时,ρ=2;当 时, ,所以交点坐标为(2,0),
【解析】(Ⅰ)把C1的参数方程化为普通方程,再化为极坐标方程;(Ⅱ)曲线C1的极坐标方程ρ2﹣10ρcosθ﹣8ρsinθ+16=0,曲线C2的极坐标方程为ρ=2cosθ,联立,即可求C1与C2交点的极坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C以原点为中心,左焦点F的坐标是(﹣1,0),长轴长是短轴长的 倍,直线l与椭圆C交于点A与B,且A、B都在x轴上方,满足∠OFA+∠OFB=180°;

(1)求椭圆C的标准方程;
(2)对于动直线l,是否存在一个定点,无论∠OFA如何变化,直线l总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△AnBnCn的三边长分别为an , bn , cn , △AnBnCn的面积为Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an ,则(
A.{Sn}为递减数列
B.{Sn}为递增数列
C.{S2n1}为递增数列,{S2n}为递减数列
D.{S2n1}为递减数列,{S2n}为递增数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},a1=a(a∈R),an+1= (n∈N*).
(1)若数列{an}从第二项起每一项都大于1,求实数a的取值范围;
(2)若a=﹣3,记Sn是数列{an}的前n项和,证明:Sn<n+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1+2a2+…+nan=4﹣
(1)求数列{an}的通项公式;
(2)若bn=(3n﹣2)an , 求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos( ﹣x)cos(x+ )+ . (Ⅰ)求函数f(x)的最小正周期和单调递减区间;
(Ⅱ)求函数f(x)在区间[0, ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,D在AB上,AD:DB=1:2,E为AC中点,CD、BE相交于点P,连结AP.设 =x +y (x,y∈R),则x,y的值分别为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣axlnx(a∈R)在x=1处的切线方程为y=bx+1+ (b∈R).
(1)求a,b的值;
(2)证明:f(x)<
(3)若正实数m,n满足mn=1,证明: + <2(m+n).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校后勤处为跟踪调查该校餐厅的当月的服务质量,兑现奖惩,从就餐的学生中随机抽出100位学生对餐厅服务质量打分(5分制),得到如图柱状图.
(Ⅰ)从样本中任意选取2名学生,求恰好有1名学生的打分不低于4分的概率;
(Ⅱ)若以这100人打分的频率作为概率,在该校随机选取2名学生进行打分(学生打分之间相互独立)记X表示两人打分之和,求X的分布列和E(X).
(Ⅲ)根据(Ⅱ)的计算结果,后勤处对餐厅服务质量情况定为三个等级,并制定了对餐厅相应的奖惩方案,如表所示,设当月奖金为Y(单位:元),求E(Y).

服务质量评分X

X≤5

6≤X≤8

X≥9

等级

不好

较好

优良

奖惩标准(元)

﹣1000

2000

3000

查看答案和解析>>

同步练习册答案