精英家教网 > 高中数学 > 题目详情
9.如图所示,在△ABC中,∠BAC=60°,线段AD⊥平面ABC,AH⊥平面DBC,H为垂足.求证:H不可能是△BCD的垂心.

分析 证明“不可能”无法下手,从反面“可能”考虑,用反证法证明.

解答 证明:假设H是△BCD的垂心,则BH⊥CD.
∵AH⊥平面DBC,DC?平面DBC,∴AH⊥DC.
∵AH∩BH=H,∴CD⊥平面ABH.
又AB?平面ABH,∴CD⊥AB.
∵AD⊥平面ABC,AB?平面ABC,∴AD⊥AB.
由于AD∩CD=D,∴AB⊥平面ACD.
∵AC?平面ACD,∴AB⊥AC.这与已知中∠BAC=60°相矛盾.
∴假设不成立.
故H不可能是△BCD的垂心

点评 (1)“不可能”类型的问题用反证法证明.“不可能”的反面是“可能”;(2)注意反证法的证题过程.实际上∠BAC只要不是90°,这个题型的方法总是一样的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow a$与$\overrightarrow b$的夹角为120°,若$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,且$|\overrightarrow a|=2$,则$\overrightarrow b$在$\overrightarrow a$方向上的正射影的数量为$-\frac{{\sqrt{33}+1}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.方程ex-x=2在实数范围内的解有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x<5,则$\sqrt{{x^2}-10x+25}$=5-x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知双曲线的中心在原点,焦点在x轴上,一条渐近线的倾斜角为$\frac{π}{3}$,点(-4,-6)在双曲线上,直线1的方程为x-my-4=0.
(1)求双曲线的方程;
(2)若l与双曲线的右支相交于A,B两点,试证:以AB为直径的圆M必与双曲线的右准线相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设tanα=1,且α为第一象限的角,求sinα与cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求不等式3x2+2x+2<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.证明下列两个结论:
(1)当点(x0,y0)在圆x2+y2=r2上时,切线方程为x0x+y0y=r2
(2)当点(x0,y0)在(x-a)2+(y-b)2=r2上时,切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球、2个白球},事件B={3个球中有2个红球、1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.
(1)事件D与A,B是什么运算关系?
(2)事件C与A的交事件是什么事件?

查看答案和解析>>

同步练习册答案