精英家教网 > 高中数学 > 题目详情

【题目】如图1,一艺术拱门由两部分组成,下部为矩形的长分别为米和米,上部是圆心为的劣弧

1)求图1中拱门最高点到地面的距离:

2)现欲以点为支点将拱门放倒,放倒过程中矩形所在的平面始终与地面垂直,如图2、图3、图4所示,设与地面水平线所成的角为.若拱门上的点到地面的最大距离恰好为到地面的距离,试求的取值范围.

【答案】(1);(2

【解析】

1)根据,可求得圆的半径,根据最高点与圆心的关系即可求得到地面的距离.

2通过讨论P点所在的位置以及三角函数的性质可判断出h取最大值时θ取值范围.

1)过O点作,,.如下图所示:

即为所求.

因为,

所以

所以

即拱门最高点到地面的距离为5

2在拱门放倒过程中,过点O作与地面垂直的直线与“拱门外框上沿”相交于点P

当点P在劣弧CD上时,拱门上的点到地面的最大距离h等于圆O的半径长与圆心O到地面距离之和;

当点P在线段AD上时,拱门上的点到地面的最大距离h等于点D到地面的距离.

由(1)知,在RtOO1B中,OB2

B为坐标原点,直线lx轴,建立如图所示的坐标系.

当点P在劣弧CD上时,

由∠OBxθOB2

由三角函数定义,得O2cos),2),

h2+2,所以当θθ时,h取得最大值2+2

当点P在线段AD上时,0θ

设∠CBDφ,在RtBCD中,DB2sinφcosφ

由∠DBxθ+φ,得D2θ+φ),2θ+φ)).

所以h2θ+φ)=4sinθ+2cosθ

又当0θ时,h′=4cosθ2sinθ4cos2sin 0

所以h4sinθ+2[0]上递增.

所以当θ时,h取得最大值5

因为2+25,所以h的最大值为2+2

综上,若拱门上的点到地面的最大距离恰好为D到地面的距离,则θ

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是递增数列,数列满足:对任意,存在,使得,则称的“分隔数列”.

(1)设,证明:数列的分隔数列;

(2)设的前n项和,,判断数列是否是数列的分隔数列,并说明理由;

(3)设的前n项和,若数列的分隔数列,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线G的顶点在原点,焦点在y轴正半轴上,点Pm,4)到其准线的距离等于5.

(1)求抛物线G的方程;

(2)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于ACDB四点,试证明|AC||BD|为定值;

(3)过AB分别作抛物G的切线l1l2l1l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据,,是上海普通职()个人的年收入,设这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确(

A.年收入平均数大大增大,中位数一定变大,方差可能不变

B.年收入平均数大大增大,中位数可能不变,方差变大

C.年收入平均数大大增大,中位数可能不变,方差也不变

D.年收入平均数大大增大,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,正方形的边长为2,设为侧棱的中点.

1)求正四棱锥的体积

2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,如果存在两条平行直线,使得对于任意,都有恒成立,那么称函数是带状函数,若之间的最小距离存在,则称为带宽.

1)判断函数是不是带状函数?如果是,指出带宽(不用证明);如果不是,说明理由;

2)求证:函数)是带状函数;

3)求证:函数)为带状函数的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少05万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.

1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;

2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?











查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点,且渐近线方程为,直线与曲线交于点两点.

(1)求双曲线的方程;

(2)若直线过原点,点是曲线上任一点,直线的斜率都存在,记为,试探究的值是否与点及直线有关,并证明你的结论;

(3)若直线过点,问在轴上是否存在定点,使得为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数), 椭圆C的参数方程为为参数)。在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(2,

(1)求椭圆C的直角坐标方程和点A在直角坐标系下的坐标

(2)直线l与椭圆C交于P,Q两点,求△APQ的面积

查看答案和解析>>

同步练习册答案