精英家教网 > 高中数学 > 题目详情
6.已知log23<log22a,则a的取值范围是a>$\frac{3}{2}$.

分析 根据对数函数的图象与性质,把不等式转化为关于a一次不等式,求出解集即可.

解答 解:∵log23<log22a,
∴3<2a,
解得a>$\frac{3}{2}$;
∴a的取值范围是a>$\frac{3}{2}$.
故答案为:a>$\frac{3}{2}$.

点评 本题考查了对数函数的图象与性质的应用问题,也考查了不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.向量$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(5,-4),则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.22B.7C.-2D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知tan(α+β)=$\frac{3}{4}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,那么tan(α+$\frac{π}{4}$)=(  )
A.$\frac{16}{19}$B.$\frac{16}{13}$C.$\frac{13}{16}$D.$\frac{8}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=sin(2x+$\frac{π}{6}$)sin(2x+$\frac{2π}{3}$)的最小正周期为(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=-$\frac{1}{2}$n2+kn(其中k∈N+),且Sn的最大值为8.
(1)确定常数k,求an
(2)求数列bn=an+2n的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数y=f(x)是奇函数,且f(1)=3,则f(-1)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(1,2),B(4,-2),则线段AB的长度为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,已知等腰梯形ABCD的底边长分别为2和14,腰长为10,则这个等腰梯形的外接圆E的方程为(  )
A.x2+(y-2)2=53B.x2+(y-2)2=64C.x2+(y-1)2=50D.x2+(x-1)2=64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x、y∈R,则“x≠3或x≠5”是x+y≠8的(  )条件.
A.充分不必要B.充要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

同步练习册答案