精英家教网 > 高中数学 > 题目详情

等差数列{an}的前n项和为Sn,且S5=45,S6=60.
(1)求{an}的通项公式an.(2)若数列{an}满足bn+1-bn=an(n∈N*)且b1=3,求数学公式的前n项和Tn

解:(1)由S5=45,S6=60??
∴an=a1+(n-1)d=5+2(n-1)=2n+3
(Ⅱ)∵bn+1-bn=an
∴b2-b1=a1
b3-b2=a2
b4-b3=a3

bn-bn-1=an-1
叠加
∴bn=(n+3)(n-1)+3=n2+2n


=
=
分析:(1)直接利用S5=45,S6=60得出关于首项和公差的两个等式,解方程即可求出首项和公差,进而求出其通项公式;
(2)先利用叠加法求出数列{bn}的通项公式,再对数列{}的通项进行裂项,采用裂项相消法求和即可.
点评:本题主要考查等差数列求和公式的应用以及叠加法和裂项相消求和法的应用,考查方程思想在解决数列问题中的应用以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若-a7<a1<-a8,则必定有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且满足a2=6,S5=50,数列{bn}的前n项和Tn满足Tn+
1
2
bn=1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn}为等比数列;
(Ⅲ)记cn=
1
4
anbn
,数列{cn}的前n项和为Rn,若Rn<λ对n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前2006项的和S2006=2008,其中所有的偶数项的和是2,则a1003的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,a1=1;等比数列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an与bn
(Ⅱ)设cn=an+2bn(n∈N*),数列{cn}的前n项和为Tn.若对一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,则a5+a6>0是S8≥S2的(  )
A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案