精英家教网 > 高中数学 > 题目详情

【题目】足球运动是一项古老的体育活动,众多的资料表明,中国古代足球的出现比欧洲早,历史更为悠久,如图,现代比赛用足球是由正五边形与正六边形构成的共32个面的多面体,著名数学家欧拉证明了凸多面体的面数(F),顶点数(V),棱数(E)满足F+V-E=2,那么,足球有______.个正六边形的面,若正六边形的边长为,则足球的直径为______.cm(结果保留整数)(参考数据

【答案】20 22

【解析】

首先根据足球表面的规律,设正五边形为块,正六边形为块,列出方程组,解方程组即可.分别计算正六边形和正五边形的面积,从而得到足球的表面积,再利用球体表面积公式即可得到足球的直径.

因为足球是由正五边形与正六边形构成,

所以每块正五边形皮料周围都是正六边形皮料,

每两个相邻的多边形恰有一条公共边,每个顶点处都有三块皮料,

而且都遵循一个正五边形,两个正六边形结论.

设正五边形为块,正六边形为块,有题知:

,解得.

所以足球有个正六边形的面.

每个正六边形的面积为.

每个正五边形的面积为.

球的表面积

.

所以.

所以足球的直径为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若处导数相等,证明:为定值,并求出该定值;

(2)已知对于任意,直线与曲线有唯一公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),已知有且仅有3个零点,下列结论正确的是(

A.上存在,满足

B.有且仅有1个最小值点

C.单调递增

D.的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E),它的上,下顶点分别为AB,左,右焦点分别为,若四边形为正方形,且面积为2.

(Ⅰ)求椭圆E的标准方程;

(Ⅱ)设存在斜率不为零且平行的两条直线,它们与椭圆E分别交于点CDMN,且四边形是菱形,求出该菱形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线相交于不同的两点.

(1)如果直线过抛物线的焦点,求的值;

(2)如果,证明直线必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个人所得税是国家对本国公民、居住在本国境内的个人的所得和境外个人来源于本国的所得征收的一种所得税.我国在1980910日,第五届全国人民代表大会第三次会议通过并公布了《中华人民共和国个人所得税法》.公民依法诚信纳税是义务,更是责任现将自2013年至2017年的个人所得税收入统计如下

并制作了时间代号x与个人所得税收入的如如图所示的散点图:

根据散点图判断,可用①y=menx与②作为年个人所得税收入y关于时间代号x的回归方程,经过数据运算和处理,得到如下数据:

以下计算过程中四舍五入保留两位小数.

1)根据所给数据,分别求出①,②中y关于x的回归方程;

2)已知2018年个人所得税收人为13.87千亿元,用2018年的数据验证(1)中所得两个回归方程,哪个更适宜作为y关于时间代号x的回归方程?

3)你还能从统计学哪些角度来进一步确认哪个回归方程更适宜? (只需叙述,不必计算)

:对于一组数据其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,对任意的都有,且当时,,则当时,方程的所有根之和为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,当角取最大值时,的周长为,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的右焦点F为抛物线的焦点,点M在第一象限的交点,且

(Ⅰ)求抛物线的标准方程;

(Ⅱ)若,过焦点F的直线l相交于AB两点,已知,求取得最大值时直线l的方程.

查看答案和解析>>

同步练习册答案