精英家教网 > 高中数学 > 题目详情
如图,正方形ABCD中,E、F分别是AB、AD的中点,将此正方形沿EF折成直二面角后,异面直线AF与BE所成角的余弦值为
1
2
1
2
分析:设正方形ABCD的边长为2,做出辅助线,过F做DC的平行线FH,由于∠AFH即为异面直线AF与BE所成角,利用余弦定理,解三角形即可得到答案.
解答:解:过F做FH∥DC,过A做AG⊥EF,连接GH,
在三角形AGH中,AH=
10
4
+
2
4
=
3

∠AFH即为异面直线AF与BE所成角
设正方形ABCD的边长为2,则在△AFH中,
AF=1,FH=2,AH=
3

∴cos∠AFH=
1
2

故答案为:
1
2
点评:本题考查的点是异面直线及其所成的角,其中利用平移的方法,求出异面直线FB与AE所成角的平面角是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
2
,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、如图把正方形ABCD沿对角线BD折成直二面角,对于下面结论:
①AC⊥BD;
②CD⊥平面ABC;
③AB与BC成60°角;
④AB与平面BCD成45°角.
则其中正确的结论的序号为
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
2
),则MN的长的最小值为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD所在平面与等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求证:AB⊥平面ADE;
(II)(理)在线段BE上存在点M,使得直线AM与平面EAD所成角的正弦值为
6
3
,试确定点M的位置.
(文)若AD=2,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)如图,正方形ABCD与正方形CDEF所成的二面角为60°,则直线EC与直线AD所成的角的余弦值为
2
4
2
4

查看答案和解析>>

同步练习册答案