精英家教网 > 高中数学 > 题目详情
3.已知a>0,b>0,且a≠1,b≠1,求证:algb=blga

分析 设algb=x,blga=y,利用取对数法证明x=y即可.

解答 证明:设algb=x,blga=y,
则同时取对数得lgalgb=lgx,lgblga=lgy,
即lgblga=lgx,且lgalgb=lgy,
则lgx=lgy,
即x=y,
故algb=blga

点评 本题主要考查对数方程的证明,利用取对数法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-3x+2=0,x∈R},B={x|x2-ax+(a-1)=0,x∈R},C={x|x2-bx+2=0,x∈R},若B⊆A,C⊆A,求a,b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|-2≤x≤5}
(1)若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;
(2)若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;
(3)若A=B,B={x|m-6≤x≤2m-1},求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示的是函数y=Asin(ωx+φ)的图象(0<φ<π)
(1)写出它的解析式;
(2)求以直线x=π为对称轴的该图象的对称曲线的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若α=-216°,l=7π,则r=$\frac{35}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知8x=4,则x=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a=$\frac{2tan70°}{1+ta{n}^{2}70°}$,b=$\sqrt{\frac{1+cos109°}{2}}$,c=$\frac{\sqrt{3}}{2}$cos81°+$\frac{1}{2}$sin99°,将a,b,c用“<”号连接起来b<c<a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两个动点A,B,满足AO⊥BO.
(1)求A,B两点的横坐标之积;
(2)证明直线AB过定点;
(3)求△AOB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,|$\overrightarrow{BC}$|•$\overrightarrow{GA}$+|$\overrightarrow{AC}$|•$\overrightarrow{GB}$+|$\overrightarrow{AB}$|•$\overrightarrow{GC}$=$\overrightarrow{0}$,其中G是三角形的重心,则△ABC的形状是(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

同步练习册答案