精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2+bx(a≠0)满足1≤f(-1)≤2,2≤f(1)≤5,则f(-3)的取值范围是________.

[12,27]
分析:设f(-3)=λf(-1)+μf(1),根据二次函数解析式和比较系数法,解出λ=6且μ=3,再根据不等式的基本性质将同向不等式相加,即可得到f(-3)的取值范围.
解答:∵f(x)=ax2+bx,
∴f(-1)=a-b,f(1)=a+b
由此可得不等式组
设f(-3)=λf(-1)+μf(1),可得9a-3b=λ(a-b)+μ(a+b)
,解之得,得f(-3)=6f(-1)+3f(1),
∵1≤f(-1)≤2,∴6≤6f(-1)≤12,
同理可得6≤3f(1)≤15,两个不等式相加得:12≤6f(-1)+3f(1)≤27
即f(-3)的取值范围是[12,27]
故答案为:[12,27]
点评:本题给出二次函数,在已知f(-1)和f(1)的取值范围情况下求f(3)的取值范围,着重考查了比较系数法和二元一次不等式的解法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案