精英家教网 > 高中数学 > 题目详情
已知向量
m
=(a-sinθ,-
1
2
),
n
=(
1
2
,cosθ).
(1)当a=
2
2
,且
m
n
时,求sin2θ的值;
(2)当a=0,且
m
n
时,求tanθ的值.
分析:(1)把a的值代入向量m中,根据∵
m
n
推断出
m
n
=0,进而求得sinθ+cosθ=
2
2
两边平方即可求得sinθcosθ即sin2θ的值.
(2)把a=0代入
m
中,利用
m
n
求得sinθcosθ=
1
4
.进而求得sin2θ利用万能公式sin2θ=
2tanθ
1+tan2θ
求得tanθ.
解答:解:(1)当a=
2
2
时,
m
=(
2
2
-sinθ,-
1
2
),
m
n
m
n
=0,
得sinθ+cosθ=
2
2
上式两边平方得1+sin2θ=
1
2

因此,sin2θ=-
1
2

(2)当a=0时,
m
═(-sinθ,-1),
m
n
得sinθcosθ=
1
4

即sin2θ=
1
2

∵sin2θ=
2sinθcosθ
sin2θ+cos2θ
=
2tanθ
1+tan2θ

∴tanθ=2+
3
或2-
3
点评:本题主要考查了同角三角函数基本关系的应用,向量的计算.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(2cos2x,
3
)
n
=(1,sin2x)
,函数f(x)=
m
n

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,f(C)=3,c=1,S△ABC=
3
2
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
m
=(cosωx,sinωx),
.
n
=(cosωx,2
3
cosωx-sinωx),ω>0,函数f(x)=
.
m
.
n
+|
.
m
|,且函数f(x)图象的相邻两条对称轴之间的距离为
π
2

(1)作出函数y=f(x)-1在[0,π]上的图象
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,c=2,S△ABC=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州一模)已知向量
m
=(sinx,-1),向量
n
=(
3
cosx,-
1
2
),函数f(x)=(
m
+
n
)•
m

(1)求f(x)的最小正周期T;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2
3
,c=4,且f(A)恰是f(x)在[0,
π
2
]上的最大值,求A,b和△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
m
|+
m
n
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(a-2b,a),
n
=(a+2b,3b),且
m
n
的夹角为钝角,则在平面aOb上,满足上述条件及a2+b2≤1的点(a,b)所在的区域面积S满足(  )

查看答案和解析>>

同步练习册答案