分析 (1)由测得身高情况的统计图知抽到的男生人数为40人,由此能估计该校男生的人数.
(2)样本中身高在180~190cm之间的男生有6人,其中4人身高在身高在180~185cm之间,2人身高在185~190cm之间,从身高在180~190cm之间的男生任选2人,
至少有1人身高在185~190cm之间的对立事件是2人的身高都在180~185cm之间,由此利用对立事件概率计算公式能求出至少有1人身高在185~190cm之间的概率.
解答 解:(1)某校以10%的比例对全校700名学生按性别进行分层抽样检查,
由测得身高情况的统计图知抽到的男生人数为:
2+5+14+13+4+2=40人,
∴估计该校男生的人数为:40÷10%=400人.
(2)样本中身高在180~190cm之间的男生有6人,
其中4人身高在身高在180~185cm之间,2人身高在185~190cm之间,
从身高在180~190cm之间的男生任选2人,
基本事件总数n=${C}_{6}^{2}=15$,
至少有1人身高在185~190cm之间的对立事件是2人的身高都在180~185cm之间,
∴至少有1人身高在185~190cm之间的概率为p=1-$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{3}{5}$.
点评 本题考查分层抽样、统计图的应用,考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:选择题
A. | {x|-3<x<-1} | B. | {x|2<x<3} | C. | {x|-3<x<-1或2<x<3} | D. | {x|-3<x<-2或1<x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {2} | B. | {2,3} | C. | {1,3} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{5}-\frac{4}{5}i$ | B. | $-\frac{3}{5}+\frac{4}{5}i$ | C. | $1+\frac{4}{5}i$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com