精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数f(x)在R上为增函数,且f(1)= ,若实数a满足f(loga3)﹣f(loga )≤1,则实数a的取值范围为(
A.0<a≤
B.a≤
C. ≤a<1
D.a≥3或0<a<1

【答案】D
【解析】解:奇函数f(x)在R上为增函数,且f(1)=
若实数a满足f(loga3)﹣f(loga )≤1,∴f(loga3)+f(﹣ )=f(loga3)+f(loga3)=2f(loga3)≤1,
即f(loga3)≤ =f(1),∴loga3≤1,求得a≥3,或0<a<1,
故选:D.
【考点精析】通过灵活运用奇偶性与单调性的综合,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{cn}的前n项和为Tn , 若数列{cn}满足各项均为正项,并且以(cn , Tn)(n∈N*)为坐标的点都在曲线 上运动,则称数列{cn}为“抛物数列”.已知数列{bn}为“抛物数列”,则( )
A.{bn}一定为等比数列
B.{bn}一定为等差数列
C.{bn}只从第二项起为等比数列
D.{bn}只从第二项起为等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=
(1)若a=5,求函数f(x)的定义域A;
(2)设B={x|﹣1<x<2},当实数a,b∈B∩(RA)时,求证: <|1+ |.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人事部门对参加某次专业技术考试的100人的成绩进行了统计,绘制的频率分布直方图如图所示.规定80分以上者晋级成功,否则晋级失败(满分为100分).

(1)求图中的值;

(2)估计该次考试的平均分 (同一组中的数据用该组的区间中点值代表);

(3)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关.

晋级成功

晋级失败

合计

16

50

合计

参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)的左、右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.

(1)求椭圆的方程;

(2)若C,D分别是椭圆的左、右端点,动点M满足MDCD,连接CM,交椭圆于点P.证明:为定值.

(3)在(2)的条件下,试问x轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DP,MQ的交点?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱台ABCD﹣A1B1C1D1中,平面BCC1B1⊥平面ABCD,四边形ABCD为平行四边形,四边形BCC1B1为等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.

(1)求证:BC1⊥平面ACC1
(2)求直线BC1与平面ADD1A1所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为(  )

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0 , g(x)为f(x)的导函数.
(Ⅰ)求g(x)的单调区间;
(Ⅱ)设m∈[1,x0)∪(x0 , 2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;
(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且 ∈[1,x0)∪(x0 , 2],满足| ﹣x0|≥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,B为△ACD所在平面外一点,MNG分别为△ABC,△ABD,△BCD的重心.

(1)求证:平面MNG∥平面ACD

(2)求

查看答案和解析>>

同步练习册答案