精英家教网 > 高中数学 > 题目详情
3.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若q是p的充分条件,则a的取值范围为[-1,6].

分析 分别化简命题p,q,利用充分条件的意义即可得出.

解答 解:p:-4<x-a<4,化为:a-4<x<4+a.
q:(x-2)(3-x)>0,解得2<x<3.
∵q是p的充分条件,∴$\left\{\begin{array}{l}{a-4≤2}\\{3≤4+a}\end{array}\right.$,解得-1≤a≤6.
故答案为:[-1,6].

点评 本题考查了不等式的解法、充分条件的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知f(x)是定义在R上的偶函数,且在(-∞,0]上是增函数,设$a=f({{{log}_4}7}),b=f({{{log}_{\frac{1}{2}}}3})$,c=f(0.20.6),则a,b,c的大小关系是(  )
A.c<b<aB.b<c<aC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x||x-2|<a},集合$B=\left\{{x\left|{\frac{2x-1}{x+2}≤1}\right.}\right\}$,且A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{x^2}{{{m^2}+12}}-\frac{y^2}{{4-{m^2}}}=1$的焦距是(  )
A.8B.4C.$2\sqrt{2}$D.与m有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2是双曲线$\frac{x^2}{9}-\frac{y^2}{16}$=1的两个焦点,p为双曲线上一点且∠F1PF2=60°,则${S_{△P{F_1}{F_2}}}$=(  )
A.$16\sqrt{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$9\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若 M={1,2,4,5},N={2,3,4,6},则M∩N=(  )
A.{2,3}B.{2}C.{1,3,4}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知|$\overrightarrow{a}$|=6,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则3$\overrightarrow{a}$•$\overrightarrow{b}$=36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)是定义在R上的奇函数,满足f(x+1)=f(x-1),当x∈(0,1)时,f(x)=2x-2,则f(log${\;}_{\frac{1}{2}}$24)的值等于(  )
A.-$\frac{4}{3}$B.-$\frac{7}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,已知点Q(1,2),P是动点,且△POQ的三边所在直线的斜率满足$\frac{1}{{k}_{op}}$+$\frac{1}{{k}_{OQ}}$=$\frac{1}{{k}_{PQ}}$.
(1)求点P的轨迹C的方程;
(2)过点F(1,0)作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB的面积.

查看答案和解析>>

同步练习册答案