(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的极大值和极小值;
(Ⅲ)当时,证明存在,使得不等式对任意的恒成立.
本小题主要考查运用导数研究函数的性质、曲线的切线方程,函数的极值、解不等式等基础知识,考查综合分析和解决问题的能力及分类讨论的思想方法.
(Ⅰ)解:当时,,得,且
,.
所以,曲线在点处的切线方程是,整理得
.
(Ⅱ)解:
.
令,解得或.
由于,以下分两种情况讨论.
(1)若,当变化时,的正负如下表:
因此,函数在处取得极小值,且
;
函数在处取得极大值,且
.
(2)若,当变化时,的正负如下表:
因此,函数在处取得极小值,且
;
函数在处取得极大值,且
.
(Ⅲ)证明:由,得,当时,
,.
由(Ⅱ)知,在上是减函数,要使,
只要
即
①
设,则函数在上的最大值为.
要使①式恒成立,必须,即或.
所以,在区间上存在,使得对任意的恒成立.
科目:高中数学 来源: 题型:
(08年沈阳市东北育才学校一模) (12分)设函数,,
其中,记函数的最大值与最小值的差为。
(I)求函数的解析式;
(II)画出函数的图象并指出的最小值。
查看答案和解析>>
科目:高中数学 来源:2013届四川省成都市高二5月月考数学试卷(解析版) 题型:解答题
设函数,,其中,a、b为常数,已知曲线在点(2,0)处有相同的切线。
(1)求a、b的值,并写出切线的方程;
(2)求函数单调区间与极值。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建师大附中高三上学期期中考试理科数学卷 题型:解答题
(本小题12分)设函数,,其中,将的最小值记为.
(I)求的表达式;
(II)设,讨论在区间内的单调性.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期期中考试文科数学卷 题型:解答题
(本小题满分15分)
设函数, (其中是函数的导函数)
(Ⅰ)求函数的极大值;
(II)若时,恒有成立,试确定实数a的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com