精英家教网 > 高中数学 > 题目详情

【题目】若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是

【答案】[1,2)
【解析】解:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题 则它的否命题为真命题即{x|x<2或x>5}且{x|1≤x≤4}是真命题
所以的取值范围是[1,2),
所以答案是[1,2).
【考点精析】认真审题,首先需要了解元素与集合关系的判断(对象与集合的关系是,或者,两者必居其一),还要掌握四种命题的真假关系(一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)①、原命题为真,它的逆命题不一定为真;②、原命题为真,它的否命题不一定为真;③、原命题为真,它的逆否命题一定为真)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2﹣(a﹣1)x﹣lnx(a∈R且a≠0).
(1)求函数f(x)的单调递增区间;
(2)记函数y=F(x)的图象为曲线C.设点A(x1 , y1),B(x2 , y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0 , y0),使得:①x0= ;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值和谐切线”.当a=2时,函数f(x)是否存在“中值和谐切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是DD1的中点,
(1)求证:CF∥平面A1DE;
(2)求二面角A1﹣DE﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某辆汽车以x km/h的速度在高速公路上匀速行驶考虑到高速公路行车安全要求60≤x≤120时,每小时的油耗所需要的汽油量,其中k为常数,若汽车以120km/h的速度行驶时,每小时的油耗为11.5L.

1k的值

2求该汽车每小时油耗的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱ABC﹣A1B1C1中,已知AB=CC1=2,则异面直线AB1和BC1所成角的余弦值为(
A.0
B.
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第n年需要付出设备的维修和工人工资等费用an的信息如图.

(1)求an
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥D﹣ABC中,AB=BC=1,AD=2,BD= ,AC= ,BC⊥AD,则三棱锥的外接球的表面积为(
A. π
B.6π
C.5π
D.8π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是空间两条直线, 是空间两个平面,则下列命题中不正确的是( )

A. 时,“”是“”的充要条件

B. 时,“”是“”的充分不必要条件

C. 时,“”是“”的必要不充分条件

D. 时,“”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图平行四边形ABCD中,∠DAB=60°,AB=2,AD=2,M为CD边的中点,沿BM将△CBM折起使得平面BMC⊥平面ABMD.

(1)求四棱锥C﹣ADMB的体积;
(2)求折后直线AB与平面AMC所成的角的正弦.

查看答案和解析>>

同步练习册答案