精英家教网 > 高中数学 > 题目详情

【题目】已知O为坐标原点,设动点M(2,t)(t>0).
(1)若过点P(0,4 )的直线l与圆C:x2+y2﹣8x=0相切,求直线l的方程;
(2)求以OM为直径且被直线3x﹣4y﹣5=0截得的弦长为2的圆的方程;
(3)设A(1,0),过点A作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

【答案】
(1)解:圆C:x2+y2﹣8x=0化为(x﹣4)2+y2=16,得到圆心C(4,0),半径r=4.

斜率不存在时,x=0满足题意;

斜率存在时,设切线方程为y=kx+4 ,即kx﹣y+4 =0,

根据圆心到切线的距离等于半径可得4= ,解得k=﹣

故切线方程为y=﹣ x+4

综上所述,直线l的方程为y=﹣ x+4 或x=0


(2)解:以OM为直径的圆的方程为(x﹣1)2+(y﹣ )= +1,

其圆心为(1, ),半径r=

因为以OM为直径的圆被直线3x﹣4y﹣5=0截得的弦长为2

所以圆心到直线3x﹣4y﹣5=0的距离d= = ,解得t=4

所求圆的方程为(x﹣1)2+(y﹣2)2=5


(3)证明:设N(x0,y0),则 =(x0﹣1,y0), =(2,t), =(x0﹣2,y0﹣t), =(x0,y0),

,∴2(x0﹣1)+ty0=0,∴2x0+ty0=2,

又∵ ,∴x0(x0﹣2)+y0(y0﹣t)=0,

∴x02+y02=2x0+ty0=2,

所以| |= = 为定值


【解析】(1)圆C:x2+y2﹣8x=0化为(x﹣4)2+y2=16,得到圆心C(4,0),半径r=4,分类讨论即可求直线l的方程;(2)设出以OM为直径的圆的方程,变为标准方程后找出圆心坐标和圆的半径,由以OM为直径的圆被直线3x﹣4y﹣5=0截得的弦长,过圆心作弦的垂线,根据垂径定理得到垂足为中点,由弦的一半,半径以及圆心到直线的距离即弦心距构成直角三角形,利用点到直线的距离公式表示出圆心到3x﹣4y﹣5=0的距离d,根据勾股定理列出关于t的方程,求出方程的解即可得到t的值,即可确定出所求圆的方程;(3)设出点N的坐标,由 得到两向量的数量积为0,利用平面向量的数量积的运算法则表示出一个关系式,又 ,同理根据平面向量的数量积的运算法则得到另一个关系式,把前面得到的关系式代入即可求出线段ON的长,从而得到线段ON的长为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若存在实数x1 , x2 , x3 , x4 , 当x1<x2<x3<x4时满足f(x1)=f(x2)=f(x3)=f(x4),则x1x2x3x4的取值范围是(
A.(7,
B.(21,
C.[27,30)
D.(27,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的图象两对称轴之间的距离是 ,若将f(x)的图象先向由平移 个单位,再向上平移 个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的单调递减区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,点M,N分别为线段A1B,AC1的中点.

(1)求证:MN∥平面BB1C1C;
(2)若D在边BC上,AD⊥DC1 , 求证:MN⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的函数.

(1)当时,求函数在点处的切线方程;

(2)设,讨论函数的单调区间;

(3)若函数没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域是(0,+∞),对于任意正实数m,n恒有f(mn)=f(m)+f(n),且当x>1时,f(x)>0,f(2)=1.
(1)求 的值;
(2)求证:f(x)在(0,+∞)上是增函数;
(3)求方程4sinx=f(x)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图△ABC中,AC=BC= AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.

(1)求证:GF∥平面ABC;
(2)求证:平面EBC⊥平面ACD;
(3)求几何体ADEBC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是边长为a的正方形,PB⊥平面ABCD,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAB;
(2)若平面PDA与平面ABCD成60°的二面角,求该四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆,如图所示,斜率为且不过原点的直线交椭圆于两点,线段的中点为,射线交椭圆于点,交直线于点.

(1)求的最小值;

(2)若,求证:直线过定点.

查看答案和解析>>

同步练习册答案