精英家教网 > 高中数学 > 题目详情
20.若函数f(x)=$\left\{\begin{array}{l}{{a}^{x-a},x≤a}\\{-{x}^{2}+2ax-{a}^{2}+2a,x>a}\end{array}\right.$(a>0且a≠1)在其定义域内单调,则实数a的取值范围为(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{2}$]C.($\frac{1}{2}$,1)D.[$\frac{1}{2}$,1)

分析 利用配方法化简解析式,对a进行分类讨论,分别由指数函数和一元二次函数的单调性,判断f(x)的单调性,结合条件列出不等式求出实数a的取值范围.

解答 解:由题意得,f(x)=$\left\{\begin{array}{l}{{a}^{x-a},x≤a}\\{-({x-a)}^{2}+2a,x>a}\end{array}\right.$,
当0<a<1时,因为y=ax-a在(-∞,a]上递减,
y=-(x-a)2+2a在(a,+∞)上递减,且f(x)在其定义域内单调,
所以aa-a≥-(a-a)2+2a,解得a≤$\frac{1}{2}$,则0<a≤$\frac{1}{2}$;
当a>1时,因为y=ax-a在(-,a]上递增,
y=-(x-a)2+2a在(a,+∞)上递减,所以f(x)在其定义域内不单调,
所以不成立,
综上 可得,实数a的取值范围是(0,$\frac{1}{2}$].

点评 本题考查分段函数的单调性,函数单调性定义的应用,考查指数函数和一元二次函数的单调性,注意端点处的函数值大小关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x•tanx,若x1,x2∈(-$\frac{π}{2}$,$\frac{π}{2}$),且f(x1)>f(x2),则下列结论中一定成立的是(  )
A.x1>x2B.x1<x2C.x1+x2>0D.x12>x22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,PA=CD=AD=2AB=2,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE∥面PAD;
(2)求直线BE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设z是复数,下列命题中的假命题是(  )
A.若z2≥0,则z是实数B.若z是虚数,则z•$\overline{z}$≥0
C.若z是虚数,则z2≥0D.若z是纯虚数,则z2<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在下列均为正数的表格中,每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x+y+z=16.
1x3
ya6
48z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,点D和E分别在边BC和AC上,且BC=3BD,CA=3CE,AD与BE交于点P,若$\overrightarrow{AP}$=m$\overrightarrow{AD}$,$\overrightarrow{BP}$=n$\overrightarrow{BE}$(m,n∈R),则m+n=$\frac{9}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设i是虚数单位,则复数$\frac{2i}{1+i}$在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若xlog23=1,则3x+3-x的值为(  )
A.2B.6C.$\frac{5}{2}$D.$\frac{10}{3}$

查看答案和解析>>

同步练习册答案