精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=e ,其中e为自然对数的底数.
(1)设g(x)=(x+1)f′(x)(其中f′(x)为f(x)的导函数),判断g(x)在(﹣1,+∞)上的单调性;
(2)若F(x)=ln(x+1)﹣af(x)+4无零点,试确定正数a的取值范围.

【答案】
(1)解:∵f(x)=e

∴f′(x)=

∴g(x)=(x+1)( ),

∴g′(x)= [(x+3) ﹣1],

当x>﹣1时,g′(x)>0,

∴g(x)在(﹣1,+∞)上单调递增


(2)解:由F(x)=ln(x+1)﹣af(x)+4知,F′(x)= ﹣g(x)),

由(1)知,g(x)在(﹣1,+∞)上单调递增,且g(﹣1)=0 可知当x∈(﹣1,+∞)时,g(x)∈(0,+∞),

则F′(x)= ﹣g(x))有唯一零点,

设此零点为x=t,易知x∈(﹣1,t)时,F′(x)>0,F(x)单调递增;

x∈(t,+∞)时,F′(t)<0.F(x)单调递减.

知F(x)max=F(t)=ln(t+1)﹣af(t)+4,

其中a=

令G(x)=ln(x+1)﹣ +4,

则G′(x)=

易知f(x)>0在(﹣1,+∞)上恒成立,

∴G′(x)>0,G(x)在(﹣1,+∞)上单调递增,且G(0)=0,

①当0<a<4时,g(t)= =g(0),

由g(x)在(﹣1,+∞)上单调递增,知t>0,则F(x)max=F(t)=G(t)>G(0)=0,

由F(x)在(﹣1,t)上单调递增,﹣1<e4﹣1<0<t,f(x)>0,g(t)>0在(﹣1,+∞)上均恒成立,

则F(e4﹣1)=﹣af(e4﹣1)<0,

∴F(t)F(e4﹣1)<0

∴F(x)在(﹣1,t)上有零点,与条件不符;

②当a=4时,g(t)= = =g(0),由g(x)的单调性可知t=0,

则F(x)max=F(t)=G(t)=G(0)=0,此时F(x)有一个零点,与条件不符;

③当a>4时,g(t)= =g(0),由g(x)的单调性知t<0,

则F(x)max=F(t)=G(t)<G(0)=0,此时F(x)没有零点.

综上所述,当F(x)=ln(x+1)﹣af(x)+4无零点时,正数a的取值范围是a∈(4,+∞)


【解析】(1)对函数f(x)求导后知g(x),对g(x)求导后得到单调性.(2)利用导函数求得F(x)的单调性及最值,然后对a分情况讨论,利用F(x)无零点分别求得a的取值范围,再取并集即可.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,
(1)证明:| a+ b|<
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李冶(1192﹣1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)(
A.10步、50步
B.20步、60步
C.30步、70步
D.40步、80步

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五棱锥P﹣ABCDE中,△ABE是等边三角形,四边形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中点,点P在底面的射影落在线段AG上.
(Ⅰ)求证:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC= ,侧棱PA与底面ABCDE所成角为45°,SPBE= ,点M在侧棱PC上,CM=2MP,求二面角M﹣AB﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围为( )
A.[ ,1]
B.[﹣ ,1]
C.[1,3]
D.(﹣∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与平面α相交但不垂直,m为空间内一条直线,则下列结论一定不成立的是(
A.m⊥l,mα
B.m⊥l,m∥α
C.m∥l,m∩α≠
D.m⊥l,m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2﹣x﹣1)ex
(1)求函数f(x)的单调区间.
(2)若方程a( +1)+ex=ex在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四面体ABCD中,E、F分别为边AB、BD的中点,则异面直线AF、CE所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l: (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为(5, ),直线l与曲线C的交点为A,B,求|MA||MB|的值.

查看答案和解析>>

同步练习册答案