精英家教网 > 高中数学 > 题目详情
(2012•成都一模)已知函数f(x)在[a,b]上连续,定义
f1(x)=f(t)min,x∈[a,b],a≤t≤x
f2(x)=f(t)max,x∈[a,b],a≤t≤x
;其中f(x)min(x∈D)表示f(x)在D上的最小值,f(x)max(x∈D)表示f(x)在D上的最大值.若存在最小正整数k使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.有下列命题:
①若f(x)=cosx,x∈[0,π],则f1(x)=1,x∈[0,π];
②若f(x)=2x,x∈[-1,4],则f2(x)=2x,x∈[-1,4]
③f(x)=x为[1,2]上的1阶收缩函数;
④f(x)=x2为[1,4]上的5阶收缩函数.
其中你认为正确的所有命题的序号为
②③④
②③④
分析:①根据新定义f(x)=cosx的最小值,可得f1(x)的解析式;
②根据指数函数的性质f(x)=2x,x∈[-1,4],上为增函数,f(x)max=24=16,从而进行判断;
③根据f(x)=x为[1,2]可以求出f1(x)和f2(x),再利用存在最小正整数k使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数,的定义进行判断;
④根据新定义求出求出f1(x)和f2(x),再代入f2(x)-f1(x)≤k(x-a)将问题转化为函数恒成立问题,求出k的最小值;
解答:解:①由题意可得:f1(x)=f(t)min=cosx,,x∈[0,π],故①错误;
②f(x)=2x,x∈[-1,4],f(x)为增函数,∴f2(x)=2x,x∈[0,π],故②正确;
③∵f(x)=x,x∈[1,2],f(x)为单调增函数,f1(x)=f(x)=1,f2(x)=f(x)=x,∴f2(x)-f1(x)=x-1=1,a=1,
∴存在k=1,使得(x-1)≤1×(x-1),对任意的x∈[1,2]成立,故③正确
④∵f(x)=x2为[1,4]上为单调增函数,f1(x)=1,f2(x)=x2,a=1,x∈[1,4]
∴f2(x)-f1(x)=x2-1,x-a=x-1,存在k=5
∴x2-1≤k(x-1),x∈[1,4],0≤x-1≤3
∴k≥x+1恒成立,k≥5,k的最小值为5,
∴f(x)=x2为[1,4]上的5阶收缩函数.故④正确;
故答案为②③④;
点评:本题主要考查学生的对新问题的接受、分析和解决的能力.要求学生要有很扎实的基本功才能作对这类问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•成都一模)已知函数f(x)=x2-2mx+2-m
(1)若不等式f(x)≥-mx+2在R上恒成立,求实数m的取值范围
(2)设函数f(x)在[0,1]上的最小值为g(m),求g(m)的解析式及g(m)=1时实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)若函数f(x)满足:在定义域D内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.有下列函数:
①f(x)=
1x
;②f(x)=2x

③f(x)=lg(x2+2);
④f(x)=cosπx,
其中你认为是“1的饱和函数”的所有函数的序号为
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)设正方体ABC-A1B1C1D1 的棱长为2,动点E,F在棱A1B1上,动点P、Q分别在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),则下列结论中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)已知函数f(x)=
3
inωxcosωx+1-sin2ωx
的周期为2π,其中ω>0.
(I)求ω的值及函数f(x)的单调递增区间;
(II)在△ABC中,设内角A、B、C所对边的长分别为a、b,c若a=
3
,c=2,f(A)=
3
2
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)设集合S={1,2,3,4,5,6},定义集合对(A,B):A⊆S,B⊆S,A中含有3个元素,B中至少含有2个元素,且B中最小的元素不小于A中最大的元素.记满足A∪B=S的集合对(A,B)的总个数为m,满足A∩B≠∅的集合对(A,B)的总个数为n,则
m
n
的值为(  )

查看答案和解析>>

同步练习册答案