精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),设函数f(x)= +λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈( ,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点( ,0)求函数f(x)在区间[0, ]上的取值范围.

【答案】
(1)解:∵f(x)= +λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx×2 cosωx+λ

=﹣(cos2ωx﹣sin2ωx)+ sin2ωx+λ

= sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣ )+λ

∵图象关于直线x=π对称,∴2πω﹣ = +kπ,k∈z

∴ω= + ,又ω∈( ,1)

∴k=1时,ω=

∴函数f(x)的最小正周期为 =


(2)解:∵f( )=0

∴2sin(2× × )+λ=0

∴λ=﹣

∴f(x)=2sin( x﹣ )﹣

由x∈[0, ]

x﹣ ∈[﹣ ]

∴sin( x﹣ )∈[﹣ ,1]

∴2sin( x﹣ )﹣ =f(x)∈[﹣1﹣ ,2﹣ ]

故函数f(x)在区间[0, ]上的取值范围为[﹣1﹣ ,2﹣ ]


【解析】(1)先利用向量数量积运算性质,求函数f(x)的解析式,再利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k型函数,最后利用函数的对称性和ω的范围,计算ω的值,从而得函数的最小正周期;(2)先将已知点的坐标代入函数解析式,求得λ的值,再求内层函数的值域,最后将内层函数看做整体,利用正弦函数的图象和性质即可求得函数f(x)的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足| + |= + )+2.
(1)求曲线C的方程;
(2)动点Q(x0 , y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点是四边形的中心,关于直线,下列说法正确的是( )

A. B.

C. 平面D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,则_____

【答案】

【解析】

分子分母同时除以,把目标式转为的表达式,代入可求.

,则

故答案为:

【点睛】

本题考查三角函数的化简求值,常用方法:(1)弦切互化法:主要利用公式, 形如等类型可进行弦化切;(2)“1”的灵活代换的关系进行变形、转化.

型】填空
束】
15

【题目】如图,正方体的棱长为1,中点,连接,则异面直线所成角的余弦值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是梯形,.

1)证明:平面平面

2)若与平面所成的角为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

【答案】(1);.

(2).

【解析】试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得两点的坐标, 设点,代入向量,利用三角函数的值域来求得取值范围.

试题解析】

(Ⅰ)圆的参数方程为为参数).

直线的直角坐标方程为.

(Ⅱ)由直线的方程可得点,点.

设点,则 .

.

由(Ⅰ)知,则 .

因为,所以.

型】解答
束】
23

【题目】选修4-5:不等式选讲

已知函数 .

(Ⅰ)若对于任意 都满足,求的值;

(Ⅱ)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,对任意的 时,有成立.

(1)判断上的单调性,并用定义证明;

(2)解不等式

(3)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数如果满足:对任意存在常数都有成立则称上的有界函数其中称为函数的一个上界已知函数

(1)若函数为奇函数求实数的值;

(2)在(1)的条件下求函数在区间上的所有上界构成的集合;

(3)若函数上是以5为上界的有界函数求实数的取值范围

查看答案和解析>>

同步练习册答案