精英家教网 > 高中数学 > 题目详情

【题目】如图,点P、Q、R、S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是(  )
A.
B.
C.
D.

【答案】C
【解析】解:A 中的PQ与RS是两条平行且相等的线段,故选项A不满足条件.
B 中的PQ与RS是两条平行且相等的线段,故选项B也不满足条件.
D 中,由于PR平行且等于SQ,故四边形SRPQ为梯形,
故PQ与RS是两条相交直线,它们和棱交与同一个点,故选项D不满足条件.
C 中的PQ与RS是两条既不平行,又不相交的直线,故选项C满足条件.
故选 C
【考点精析】利用异面直线的判定对题目进行判断即可得到答案,需要熟知过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017南京一模19】设函数

(1)当时,解关于的方程(其中为自然对数的底数);

(2)求函数的单调增区间;

(3)当时,记函数,是否存在整数,使得关于的不等式

有解?若存在,请求出的最小值;若不存在,请说明理由

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组[45,50),第2组[50,55),第3组[55,60),第4组[60,65),第5组[65,70],得到如图所示的频率分布直方图.现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生做初检.

(1)求每组抽取的学生人数;
(2)若从6名学生中再次随机抽取2名学生进行复检,求这2名学生不在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C(t, )(t∈R,t≠0)为圆心的圆过原点O.
(1)设直线3x+y﹣4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(2)在(1)的条件下,设B(0,2),且P、Q分别是直线l:x+y+2=0和圆C上的动点,求|PQ|﹣|PB|的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是首项为a1 , 公比为q的等比数列,Sn是{an}的前n项和.Sn= ;若am+an=as+at , 则m+n=s+t;Sk , S2k﹣Sk , S3k﹣S2k成等比数列(k∈N).
以上说法正确的有( )个.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南京市、盐城市2017届高三年级第次模拟(本小题满分14分)

在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米矩形纸板的两边ABBC的长分别为a厘米和b厘米,其中ab

(1)当a=90时,求纸盒侧面积的最大值;

(2)试确定abx的值,使得纸盒的体积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是容量为100的样本的频率分布直方图,则样本数据在[6,10)内的频率和频数分别是( )

A.0.32,32   
B.0.08,8  
C.0.24,24   
D.0.36,36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在过点(﹣5,﹣4)的直线l,使它与两坐标轴围成的三角形的面积为5?若存在,求出直线l的方程(化成直线方程的一般式);若不存在,说明理由.

查看答案和解析>>

同步练习册答案